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Introduction

Definition [lyama]

A functorially finite subcategory C C mod A is called an n-cluster tilting (CT)
subcategory if

C={X ecmodA | Exti(C,X)=0for0<i<n}
= {X € mod A | Ext} (X,C) =0 for 0 < i < n}.

If C = add(M) for some M € mod A, then we call M an n-cluster tilting module.

If M € mod A, then add(M) is functorially finite.
C = mod A is the unique 1-cluster tilting subcategory.

3 1-cluster tilting module M <= mod A = add(M)
<= A is representation-finite.

n < gl.dim.(A).
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We denote by 7, := 7Q""! and 7, :== 77 Q™ ("1 the n-Auslander—Reiten translations.

For a subcategory C € mod A we set
Cp = {isoclasses of indecomposable non projective A-modules in C}

Cz = {isoclasses of indecomposable non injective A-modules in C}.



Introduction

€ ={X emodA | Ext} (C,X) =0for0 < i < n}
= {X emod A | Exty (X,C) = 0for0 < i < n}.

Proposition [lyama, V]

Let C € mod A be n-CT. Then the following hold.



Introduction

€ ={X emodA | Ext} (C,X) =0for0 < i < n}
= {X emod A | Exty (X,C) = 0for 0 < i < n}.

Proposition [lyama, V]
Let C € mod A be n-CT. Then the following hold.

(a) C contains all projective and all injective A-modules.



Introduction

€ ={X emodA | Ext} (C,X) =0for0 < i < n}
= {X emod A | Exty (X,C) = 0for 0 < i < n}.

Proposition [lyama, V]
Let C € mod A be n-CT. Then the following hold.
(a) C contains all projective and all injective A-modules.

(b) 7, :Cp — Cz and 7,; : Cz — Cp are mutually inverse bijections.



Introduction

€ ={X emodA | Ext} (C,X) =0for0 < i < n}
= {X emod A | Exty (X,C) = 0for 0 < i < n}.

Proposition [lyama, V]
Let C € mod A be n-CT. Then the following hold.
(a) C contains all projective and all injective A-modules.

(b) 7, : Cp — Cz and 7,; : Cz —> Cp are mutually inverse bijections.
(c) Let M € Cp. Then Q¥(M) is indecomposable for 1 <i <n — 1.



Introduction

€ ={X emodA | Ext} (C,X) =0for0 < i< n}
= {X emod A | Exty (X,C) = 0for0 < i < n}.

Let C € mod A be n-CT. Then the following hold.

(a) C contains all projective and all injective A-modules.

(b) 7, : Cp — Cz and 7,; : Cz —> Cp are mutually inverse bijections.
(c) Let M € Cp. Then Q¥(M) is indecomposable for 1 <i <n — 1.
(d) Let M € Cz. Then Q~%(M) is indecomposable for 1 <i <n — 1.



Introduction

Examples where n-cluster tilting subcategories exist:

e tensor products of l-homogeneous n-representation-finite algebras (if k is perfect)
[Herschend—lyamal]

e n-APR tilts of n-representation-finite algebras [lyama—Oppermann]
e higher Nakayama algebras [Jasso—Kilshammer]

e many more...
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Main question

From now on:
e () is a (connected, finite) quiver,
e J is the arrow ideal of kQ,
e [ > 2 s an integer,
e 1. > 2 is an integer,

o A =kQ/JF (truncated path algebra).

For which @, L and n does there exist an n-CT subcategory/module of mod A?



The quivers A,, and 4,,

Ap =129 .y
ag
07 1
am/ \al
A, =
m 2
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Known cases

The answer is known in the following cases:
o A=kA,,/J* [L =2 Jasso, L >3 V],
e A =kA,,/J" [Darpé-lyama],
e A =kQ/J" and n = gl.dim.(A) [Sandgy-Thibault],
o A=kQ/J? |V].
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L=2and L >3

Example for L > 3

The Auslander—Reiten quiver of kAg/J3 is

,,,, 70 N T2
N ORIt

and the additive closure of the encircled modules is a 2-CT subcategory.

In general, if Q = A, and L > 3, and if there exists an n-CT subcategory, then n is
even.

10



L=2and L >3

Example for L = 2

The Auslander-Reiten quiver of kA7/J? is
g ¢ 5 i 5 3
AN SN SN SN SN SN
7 coesos GIREEEEE CRSEEEES A ceoecs 3 9 - 1

and there exist

11



L=2and L >3

Example for L = 2
The Auslander-Reiten quiver of kA7/J? is

7 6 5 ; 3 ;
AN SN SN SN SN SN

T 6 5o 4 5} oooooc 7} aooaac 1

and there exist

o P B

a 2-CT subcategory
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L=2and L >3

Example for L = 2

The Auslander-Reiten quiver of kA7/J? is

T - T SEEE RN SRR SRR

and there exist

P P P By BB P BB B B B B

a 2-CT subcategory a 3-CT subcategory a 6-CT subcategory

In general, if L = 2, there is no restriction on the parity of n.
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Answer forany ), L, n

Two ingredients:
e the shape of @), and
e the length of certain paths in Q.

The case Q = A,, and the case L = 2 are special.

Theorem [Darpé—lyamal

Let A = kA,,/JE. There exists an n-CT subcategory of mod A if and only if one of
the following two conditions holds:
(i) 2(22L+1))|2(m+1), or
(i) (2(2%2L+1)) | t(m+1), where t = ged(n + 1,2(L — 1)).
There are many different n-CT subcategories, all of the form add(M) for some
M € modA.

12



Shape of ()

For a vertex v in () we denote
e )~ (v):==number of arrows terminating at v (incoming degree)
e 6T (v):=number of arrows starting at v (outgoing degree)
e 0(v):=(0"(v),6"(v)) (degree)

13



Shape of ()

Proposition [Oppermann-V]

Let A = kQ/J”. Assume there exists an n-CT subcategory C C mod A. Then for
every v € Qg we have

4(v) € {(0,0),(0,1), (1,0), (1,1), (1,2),(2,1),(2,2)}.

Moreover, if L > 3 or n > 3, then §(v) # (2,2).
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Shape of ()

Proposition [Oppermann-V]

Let A = kQ/J”. Assume there exists an n-CT subcategory C C mod A. Then for
every v € Qg we have

d(v) € {(0,0),(0,1), (1,0), (1,1),(1,2),(2,1), (2,2)}-
Moreover, if L > 3 or n > 3, then §(v) # (2,2).

Proof sketch

Assume that there are at least 3 arrows terminating at v. Show that (I(v)) has at
least two indecomposable summands using results of Huisgen-Zimmermann.
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Shape of ()

Let @ be a quiver, let n > 2 and let L > 2. We say that Q is (n, L)-pre-admissible if
(i) every vertex of @ has at most two incoming and at most two outgoing arrows,
(ii) no vertex of @ has degree (0,2) or (2,0), and

(iii) if L > 3 or n > 3, then no vertex of @) has degree (2,2).

15



Flow paths

Let £ > 2. A k-flow path v in Q) is a path

— (o751 Vs a2 o Ak —2 Vet Qp—1 vk
such that
o 5(v1) # (1,1),
e (vg) # (1,1), and
o j(v;)=(1,1) forall 1 <i<k.

We define the degree of v to be (V) = (67 (v), 6T (v)) :== (6~ (v1),6" (vg)).
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Flow paths

Let £ > 2. A k-flow path v in Q) is a path

(o751 a2 Ak —2 Qp—1

V=1 V2 Vp—1 — Vg,
such that
e 5(v1) # (1,1),
e (vg) # (1,1), and

o j(v;)=(1,1) forall 1 <i<k.
We define the degree of v to be (V) = (67 (v), 6T (v)) :== (6~ (v1),6" (vg)).

Note: if @ is (n, L)-pre-admissible, then there exists a k-flow path if and only if

Q@ # Ay and Q # Ay,
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Length of flow paths

Let @ be (n, L)-pre-admissible and let v be a k-flow path in Q. We define r(v, L)
depending on the degrees of v; and vy as in the following table:

5(01) o) | @1y | 12) |(@2)
(0,1) % 1 0 1
(1,2) 1 9 _ % 1_ % 1
(21) 0 |1-%| -L 0
(2,2) 1 1 0 1

17



Length of flow paths

Let @ be (n, L)-pre-admissible and let v be a k-flow path in Q. We define r(v, L)
depending on the degrees of v; and vy as in the following table:

5(w1) Mo | ey | a2 | e
(0,1) % 1 0 1
(1,2) 1 9 _ % 1_ % 1
(21) 0 |1-%| -L 0
(2,2) 1 1 0 1

Let v be a k-flow path with §(v1) = (1,2) and §(vg) = (2,1). Then
r(v,4) =2— 3 =0.

17



Length of flow paths

Definition
Let @ be an (n, L)-pre-admissible quiver and v be a k-flow path in Q. We say that v
is (n, L)-admissible if there exists an integer py > 0 such that

k=(v+1)(%52L+1) +r(v,L)

and one of the following conditions holds:
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is (n, L)-admissible if there exists an integer py > 0 such that

k=(v+1)(%52L+1) +r(v,L)

and one of the following conditions holds:
(i) L=2,
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Length of flow paths

Definition

Let @ be an (n, L)-pre-admissible quiver and v be a k-flow path in Q. We say that v
is (n, L)-admissible if there exists an integer py > 0 such that

k=(v+1)(%52L+1) +r(v,L)
and one of the following conditions holds:
(i) L=2,

(i) L > 3, n and py are both even and 6(v) = (0,0),

(iii) L > 3, n and py are both even, n+py > 2 and 4(v) € {(1,1),(1,2),(2,1),(2,2)},
or
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Length of flow paths

Definition

Let @ be an (n, L)-pre-admissible quiver and v be a k-flow path in Q. We say that v
is (n, L)-admissible if there exists an integer py > 0 such that

k=(v+1)(%52L+1) +r(v,L)

and one of the following conditions holds:
(i) L=2,
(i) L > 3, n and py are both even and 6(v) = (0,0),

(iii) L > 3, n and py are both even, n+py > 2 and 4(v) € {(1,1),(1,2),(2,1),(2,2)},
or

(iv) L >3, n and py are not both even and §(v) € {(0,1),(0,2),(1,0),(2,0)}.

18



Length of flow paths

Let n =4, L =4 and Q be the quiver

/2 3 > 4 5 > 6
1528 —9 1031112313 > 14— 15 > 16 —> 17 = 18 = 19 —> 20 = 21 —> 22 = 23 —> 24 — 25 — 26

29 28 27

19



Length of flow paths

Example
Let n =4, L =4 and @ be the quiver

1 8—9—=>10—>11—->12—-13—>14— 1516 - 17 > 18 = 19 = 20 — 21 — 22 —> 23 — 24 — 25 —> 26 7

29 28 27

We have r(v,4) =2 — 4 =0. Since 7= (0 + 1) (324 + 1) + 0, v is (4, 4)-admissible
(pv=0.)
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Length of flow paths

Example
Let n =4, L =4 and @ be the quiver

1 8—9—=>10—>11—->12—-13—->14—15—>16 - 17 > 18 = 19 = 20 — 21 — 22 = 23 — 24 — 25 —> 26 7

29 28 27

We have 7(v,4) =2 — 5 = 0. Since 21 = (2+1) (3324 + 1) + 0, v is (4, 4)-admissible
(pv =2.)
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Length of flow paths

Example
Let n =4, L =4 and @ be the quiver

1 8—9—=>10—>11—->12—13—->14— 1516 - 17 > 18 = 19 = 20 — 21 — 22 = 23 = 24 — 25 —> 26 7

29 28 27

We have 7(v,4) = —3 = —2. Since 5 = (0+1) (4524 + 1) — 2, v is (4,4)-admissible
(pv =0.)

19



Length of flow paths

Proposition [Oppermann-V]

Let A = kQ/J". Assume there exists an n-CT subcategory C C mod A. Then every
flow path in @ is (n, L)-admissible.
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Proposition [Oppermann-V]

Let A = kQ/J". Assume there exists an n-CT subcategory C C mod A. Then every
flow path in @ is (n, L)-admissible.

To prove this, first we show the following.
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Length of flow paths

Proposition [Oppermann-V]

Let A = kQ/J". Assume there exists an n-CT subcategory C C mod A. Then every
flow path in @ is (n, L)-admissible.

To prove this, first we show the following.

Lemma [Oppermann-V]

Let A = kQ/J" and let L > 3. Assume there exists an n-CT subcategory C C mod A.
If v is a k-flow path in @, then k > L + 1.

20



Injective non-projective indecomposables
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Now let
aq (e %) Q2 Qp—1
V=" V2 Vp—1 —> U

be a k-flow path in Q.
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Injective non-projective indecomposables

Now let
o1 Qg Ofg—2 k-1
V=1 V2 Vg—1 — Vg
be a k-flow path in Q.
Then

d(vr) €{(0,1),(1,2),(2,1),(2,2)} and 6(vx) € {(1,0),(2,1),(1,2),(2,2)},

and k£ > L + 1.
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Injective non-projective indecomposables

Now let
aq a2 Q-2 Q1
V=" V2 Vp—1 —> U

be a k-flow path in Q.
Then

d(vr) €{(0,1),(1,2),(2,1),(2,2)} and 6(vx) € {(1,0),(2,1),(1,2),(2,2)},

and k£ > L + 1.

We want to define . — 1 indecomposable injective non-projective A-modules which
depend on §(v1).
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Injective non-projective indecomposables

Case §(v1) = (0,1): then we have

al a2 ar—2 a1

Ap—1

U1 V2 to VL—1

and we set

22
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Case §(v1) = (0,1): then we have

(63] a2

Ap—1

U1 V2

and we set
IV<1) = I(v1)
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Injective non-projective indecomposables

Case §(v1) = (0,1): then we have

al a2 ar—2 a1

Ap—1

U1 V2 to VL—1

and we set
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Injective non-projective indecomposables

Case §(v1) = (0,1): then we have

a1 a9 Qg —2 ar—1 Qp—1
’l}l ’l}2 DY UL*l “ e /l}k

and we set
L(1) =1(v1),Iv(2) = I(v2),...,Iv\(L — 1) = I(vp—1).
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Injective non-projective indecomposables

Case d(v1) € {(1,2),(2,2)}: then we have

a9 ay—1

aq U2 “e e /UL

v B2 BrL-1

BL

u2 .« e uL

and we set
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Injective non-projective indecomposables

Case d(v1) € {(1,2),(2,2)}: then we have

a9 ay—1

aq U2 “e e /UL

v B2 BrL-1

BL

u2 .« e uL

and we set
Iv(1) = I(u2)
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Injective non-projective indecomposables

Case d(v1) € {(1,2),(2,2)}: then we have

and we set

a2

ap—1

[e3] (%) vL
(% 4
\u2 B2 ) Br—1 uL BrL

L(1) = I(ug), y(2)

I(us3)
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Injective non-projective indecomposables

Case d(v1) € {(1,2),(2,2)}: then we have

a2 ar—1 ag,
al /l)2 .« . /UL

v B2 BrL-1 BL
U2 “ o o uL

and we set
L(1) = I(ug), Iy(2) = I(us),..., (L —1) = I(ur).
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Injective non-projective indecomposables

Case 0(v1) = (2,1): then we have

A —2

A —1

and we set
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Injective non-projective indecomposables

Case 0(v1) = (2,1): then we have

A —2

A —1

24

Vk—1

Uk



Injective non-projective indecomposables

Case 0(v1) = (2,1): then we have

A —2

A —1

and we set
L,(1) =1(v1), Iy(2) = I(v2)

24
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Case 0(v1) = (2,1): then we have

and we set

L(1) = I(v1), Iy(2) = I(vs), ...

24

Injective non-projective indecomposables

A —1

/02 o ka_l

,IV(L - 1) = I(Q}L_l).
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Injective non-projective indecomposables

Case 0(v1) = (2,1): then we have

A —2

A —1

U1 V2

and we set

Vk—1

L(1) = I(v1), Iy(2) = I(v3), ..., I(L — 1) = I(v_1).

Dually we define Py (i) for 1 <¢ < L — 1.

24
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Length of flow paths
Now to show that a k-flow path v must be (n, L)-admissible, we compute

T (Iv())

for1<i<L-—1andp>0.
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Length of flow paths

Now to show that a k-flow path v must be (n, L)-admissible, we compute

Th(Iy(7))
for1<i<L-—1andp>0.

A case by case analysis shows that the existence of an n-CT subcategory, implies that
there exists py such that
P (1(0)) = Po(L — ).
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Length of flow paths

Now to show that a k-flow path v must be (n, L)-admissible, we compute

Th(Iy(7))
for1<i<L-—1andp>0.

A case by case analysis shows that the existence of an n-CT subcategory, implies that
there exists py such that

TR (I (2) = P(L =)

An explicit computation of the above isomorphism gives the condition on the length of
V.
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(n, L)-admissible quivers

Let n > 2 and L > 2. Let Q) be an (n, L)-pre-admissible quiver. We say that @ is
(n, L)-admissible if one of the following conditions holds:

(@) @ =A, and (2(%51L+1)) | 2(m+1), or
(b) Q= A, and (2 (25LL + 1)) | t(m + 1), where t = ged(n + 1,2(L — 1)), or
(c) Q # A, and every k-flow path v in Q is (n, L)-admissible.

26



(n, L)-admissible quivers

Theorem [case () = A Darpé—lyama, case L =2V, case L > 3 Oppermann-V]

The algebra A = kQ/J” admits an n-CT subcategory if and only if @ is an
(n, L)-admissible quiver.
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27



(n, L)-admissible quivers

Theorem [case @) = flm Darpé—lyama, case L =2V, case L > 3 Oppermann-V]

The algebra A = kQ/J% admits an n-CT subcategory if and only if @ is an
(n, L)-admissible quiver. The n-CT subcategory is always of the form add(M) for
some M € mod A. It is unique if and only if Q # A,,.

Proof sketch
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(n, L)-admissible quivers
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(n, L)-admissible quivers

Theorem [case () = flm Darpé—lyama, case L =2V, case L > 3 Oppermann-V]

The algebra A = kQ/J% admits an n-CT subcategory if and only if @ is an
(n, L)-admissible quiver. The n-CT subcategory is always of the form add(M) for
some M € mod A. It is unique if and only if Q # A,,.

Proof sketch

For Q # A,,: (=) has been motivated. For the other direction, we first show
existence of an n-CT in a universal cover of () via a direct computation. Then we use
a result of Darp6—lyama to induce an n-cluster tilting subcategory in mod A.
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(n, L)-admissible quivers

Let Q # A, be an (n, L)-admissible quiver.
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e cither they are supported only on vertices with degree (1, 1) (interval modules):
0 Y = = 0
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e they are supported in exactly one vertex with degree different than (1,1).
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(n, L)-admissible quivers

Let Q # A, be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(i) If L =2, then kQ/J? is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:
e cither they are supported only on vertices with degree (1, 1) (interval modules):
0 Y = = 0
0—k—k—--+—k—0,o0r
e they are supported in exactly one vertex with degree different than (1,1). If
that vertex has degree (2,1) then an indecomposable has the form

0cC My, € 00 Mvo\
/ le Mvz e MUL 07
0cC M. C o0 My,

U2—L

and similarly in other cases.
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and there are exactly py(L — 1) interval modules supported in v which are direct
summands of M.
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(n, L)-admissible quivers

Assume Q # A,, is (n, L)-admissible. To find an n-CT module M:
e All projective and all injective indecomposable modules are direct summands of M.
o If vis a k-flow path in @, then

k=(pv+1) (%L +1) +r(v,L)

and there are exactly py(L — 1) interval modules supported in v which are direct
summands of M.If L > 3, then these interval modules lie in diagonals as in the
case (Q = A,, and this is where the parity conditions come from.

e These are all the direct summands of M.
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(n, L)-admissible quivers

Example

Let @ be the quiver

/2 3 > 4 5 > 6
1528910311123 13 > 1431516 — 17 > 18 = 19 > 20 = 21 > 22 = 23 > 24 — 25 > 26 =3 7.
28 27

29

Then Q is (4, 4)-admissible. Hence the algebra A = k@/J* admits a unique 4-CT
subcategory C.
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(n, L)-admissible quivers

Example

Let @ be the quiver

/2 3 > 4 5 > 6
1528910311123 13 > 1431516 — 17 > 18 = 19 > 20 = 21 > 22 = 23 > 24 — 25 > 26 =3 7.

29 28 27

Then Q is (4, 4)-admissible. Hence the algebra A = k@/J* admits a unique 4-CT
subcategory C.

Moreover, C = add(M) where M is the direct sum of the projective modules, the
injective modules, and the interval modules (13), (13,14), (13, 14,15), (19,20, 21),
(20,21), (21).
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How to find examples

It is easy to find (n, L)-admissible quivers such that A = kQ/J is a wild algebra and
admits an n-cluster tilting subcategory.
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How to find examples

It is easy to find (n, L)-admissible quivers such that A = kQ/J is a wild algebra and
admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree (0, 1),
(1,0), (1,2), or (2,1).For example
Q N
1 2

—

Then extend each arrow in this graph to an (n, L)-admissible flow path.In this example,
we may pick n = 2 and py = 2 for all arrows to obtain the (n, L)-admissible quiver

(%) Up4+6 —> -« -

RN e ~

UL+3 U1 U s UL+5 U2L+7

Picking L large enough, gives a wild algebra.
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nZ-cluster tilting subcategories

Definition [lyama—Jasso]

An n-cluster tilting subcategory C C mod A is called nZ-cluster tilting if it is closed
under Q.
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under Q.

Theorem [Herschend—-Kvamme-V, Oppermann-V|

Let A = kQ/JL. Then A admits an nZ-cluster tilting subcategory if and only if one of
the following conditions holds:

(i) Q= Ay and L=2o0r L|(m—1), and n =271, or
(i) Q=Anand L=20r L=n+2, and n | (m + 1).
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nZ-cluster tilting subcategories

Definition [lyama—Jasso]

An n-cluster tilting subcategory C C mod A is called nZ-cluster tilting if it is closed
under Q.

Theorem [Herschend—-Kvamme-V, Oppermann-V|

Let A = kQ/J". Then A admits an nZ-cluster tilting subcategory if and only if one of
the following conditions holds:

(i) Q= Ay and L=2o0r L|(m—1), and n =271, or
(i) Q=Anand L=20r L=n+2, and n | (m + 1).

Corollary [Sandgy—Thibault]

Let A = kQ/J" and d = gl. dim.(A). There exists a d-CT subcategory of mod A if
and only if Q@ = A,,, and either of L =2 or L | (m — 1) holds.
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A nice property for L = 2

Theorem [V]

Let A = kQ/J? and let N be the largest integer for which Q is (N, 2)-admissible.
Then the following hold.
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Theorem [V]

Let A = kQ/J? and let N be the largest integer for which Q is (N, 2)-admissible.
Then the following hold.

(a) For each divisor n of NV, the quiver @ is (n,2)-admissible. In particular, there exists
an n-cluster tilting subcategory C,, C mod A.
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A nice property for L = 2

Theorem [V]

Let A = kQ/J? and let N be the largest integer for which Q is (N, 2)-admissible.
Then the following hold.

(a) For each divisor n of NV, the quiver @ is (n,2)-admissible. In particular, there exists
an n-cluster tilting subcategory C,, C mod A.

(b) The set {C,, | n is a divisor of N} is a complete lattice with respect to inclusion
isomorphic to the opposite of the lattice of divisors of N.
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A nice property for L = 2

Let @ be the quiver

23 +— 22 +— 21 < 20 + 19
T

1—14 — 15 — 16 — 17 — 18

4

2—-3 —4—5—6—7—8 —>9— 10— 11 — 12 — 13.
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A nice property for L = 2

Let @ be the quiver

23 +— 22 +— 21 < 20 + 19
T

1—14 — 15 — 16 — 17 — 18

4

2—-3 —4—5—6—7—8 —>9— 10— 11 — 12 — 13.

The largest N for which @ is (IV, 2)-admissible is N = 12.
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A nice property for L = 2

The Auslander-Reiten quiver of A = kQ/.J? is

f\f\f\f\/\/\/\/\/\/\/\ '

\/‘\/‘\/‘\/‘\/‘\/‘\/‘\/‘\/‘\/‘

where the simple module S(1) appears twice. Then we have

C1 = mod A, Co=add{A, 11,9,7,5,3, }4,23,21,19,17, 15, } },
C3=add{A, 10,7,4, },22,10,16,3}, Ci=add{A, 9,5, Y, 21,17, 3},
Ce =add{A, 7, 4, 19,3}, Ciz =add{A, 4.3},

and C, is an n-cluster tilting subcategory of mod A.
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A nice property for L = 2

Then the lattice
12
RN
4 6
NN
2 3
N/
1

of divisors of 12
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A nice property for L = 2

Then the lattice
12
RN
4 6
NN
2 3
N/
1

of divisors of 12 corresponds to the lattice

Ci2
5 ©
Cy Cs
SIS
Co C3
¢ 0

C1

of inclusions of n-cluster tilting subcategories of mod A.
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Thank You!



