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Motivation
For each n ≥ 3, one can define M0,n, the Deligne–Mumford
compactification of the moduli space M0,n of smooth rational
curves with n distinct marked points labelled 1, . . . , n.

Compactification means that we allow limits of smooth curves
which are a little bit singular, but only the simplest possible
singularities (simple nodes) are allowed.
M0,n turns out to be a smooth projective variety, and moreover
the cycle map from the Chow ring to the cohomology is an
isomorphism. The Chow ring admits an elegant description: it is a
commutative ring generated by divisors describing two-component
singular curves, subject to linear and quadratic relations (Keel
1990).
Manin asked in early 2000s if the Chow rings of M0,n were Koszul.
Surprisingly, this question remained unsolved for about 15 years. In
this talk, I shall give a positive solution, and discuss some related
topics. Convention: will use M0,1+n, and label the points 0, . . . , n.
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Recollections: Koszul algebras
Let A be a weight graded (commutative or noncommutative)
associative k-algebra. We assume the weight grading to be
standard, in other words, we assume A to be generated by
elements of weight 1 (in particular, A0 = k). Such an algebra is
automatically augmented, and k acquires a trivial A-module
structure via the augmentation map.

The algebra A is said to be Koszul if the trivial module has a
resolution by free A-modules

· · · → Aan dn→ Aan−1 dn−1→ · · · d2→ Aa1 d1→ A ε→ k→ 0,

where the differentials dk are “linear”, i.e. their matrices consist of
elements of weight 1. (This resolution can be used, among other
things, to relate the derived category of A-modules to that of
Ext•(k, k).)
A Koszul algebra is necessarily quadratic, but the converse is not
true. However, an algebra with a quadratic Gröbner basis is
Koszul.
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Koszul.



Recollections: Keel presentation

Keel established that the Chow ring of M0,1+n is generated by
elements DS with S ⊂ {0, 1, . . . , n}, 2 ≤ |S| ≤ n − 1, subject to
the relations

• DS = DSc for all S,
• ∑

i ,j∈S,k,l /∈S
DS = ∑

i ,k∈S,j,l /∈S
DS = ∑

i ,l∈S,j,k /∈S
DS for all pairwise

distinct i , j , k, l ,
• DSDT = 0 for all S,T with S ∩ T 6= ∅, S 6⊆ T , T 6⊆ S.

Geometrically, the class DS correspond to the divisor DS whose
generic element is the curve with two components, the points of S
on one branch, the points of the complement Sc on the other.
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Recollections: De Concini–Procesi presentation

De Concini and Procesi established that M0,1+n may be
constructed as the wonderful compactification of the Coxeter
arrangement of type An−1 for the minimal building set. This leads
to another presentation of the Chow ring:

the generators are YS with S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n, and the
relations between them are

• ∑
i ,j∈S

YS = 0 for all i 6= j ,

• YSYT = 0 for all S,T with S ∩ T 6= ∅, S 6⊆ T , T 6⊆ S.
It is easy to see that if one eliminates DS for 0 ∈ S using the
symmetry relation DS = DSc , and also eliminates Y{1,...,n} from the
De Concini–Procesi presentation, the two presentations become
identical.
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Need another presentation

Proposition. Neither the Keel presentation nor the De
Concini–Procesi presentation admits a linear-and-quadratic
Gröbner basis (either commutative or noncommutative) for n ≥ 4,
no matter what admissible ordering of generators one chooses.

Idea of the proof. Let us discuss the Keel presentation. Suppose
that there exists a linear-and-quadratic Gröbner basis, which we
may assume reduced. The Chow ring is of finite rank, so the
monomials Dk

S , k ≥ 1, cannot be all linearly independent, so for
each S, either DS or D2

S appears as the leading monomial in our
Gröbner basis. Let us consider the smallest variable DS which
does not appear as a leading monomial (i.e. the smallest variable
that is not eliminated). This means that D2

S appears as a leading
monomial; moreover, since the Gröbner basis we consider is
assumed reduced, this means that D2

S is a relation. But our
divisors always have nontrivial self-intersection for n ≥ 4.
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Recollections: Etingof–Henriques–Kamnitzer–Rains–Singh
presentation

Found independently by Etingof–Henriques–Kamnitzer–Rains to
compute the modulo 2 cohomology of the real M0,1+n in their
Annals paper, and by Singh in his PhD thesis supervised by
Strickland:

the generators are XS , S ⊆ {1, 2, . . . , n}, |S| ≥ 3, and the relations
between them are

• X 2
S = 0 for |S| = 3,

• XS(XS − XS\{s}) = 0 for |S| > 3, and s ∈ S,
• (XS∪T − XS)(XS∪T − XT ) = 0 for all S,T with S ∩ T 6= ∅,

S 6⊆ T , T 6⊆ S.
This is related to the De Concini–Procesi presentation by setting
XS := ∑

S⊆T YT .
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Statement of the main result
Theorem. There exist an ordering of monomials for which the
Etingof–Henriques–Kamnitzer–Rains–Singh presentation has a
quadratic Gröbner basis of relations. Consequently, the Chow ring
of M0,1+n is Koszul for all n.

Choice of ordering. Consider the following binary relation ≺′ on
the set 2{1,...,n}: we say that I ≺′ J if either J = I \ {a} where
a ∈ I, a 6= max(I), or I = J \ {max(J)}. Let ≺ be the transitive
closure of ≺′. Then ≺ is a partial order. We extend it to a total
order in certain way, and use it to order the generators XS ,
S ⊆ {1, 2, . . . , n}, |S| ≥ 3. The associated graded lexicographic
order of monomials is our order of choice.
For example, for n = 4, {1, 2, 3} ≺′ {1, 2, 3, 4}, and
{1, 2, 3, 4} ≺′ S if |S| = 3, S 6= {1, 2, 3}. One suitable extension is
the lexicographic order of subsets (represented as ordered
sequences):
{1, 2, 3} < {1, 2, 3, 4} < {1, 2, 4} < {1, 3, 4} < {2, 3, 4}.
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Sketch of a proof, part 1 (technical)
There are some repetitions among the leading monomials.
Therefore, need to perform some Gaussian elimination: obtaining
the following elements with pairwise different leading monomials.

• X 2
S , |S| = 3,

• X 2
S − X∂(S)XS , |S| > 3,

• XS\{s}XS − X 2
S , |S| > 3, max(S) 6= s ∈ S,

• (XS − XS∪T )(XT − XS∪T ), S ∩ T 6= ∅, S 6⊂ T , T 6⊂ S,
max(S) = max(T ),

• (XS − XS∪T )(XT − U), S ∩ T 6= ∅, S 6⊂ T , T 6⊂ S,
max(S) > max(T ), T not an initial interval of S ∪ T , U is
the shortest initial interval of S ∪ T containing T ,

• (XS − XS∪T )(X∂p−1(S∪T ) − X∂p(S∪T )), |(S ∪ T ) \ S| > 1,
p ≥ 1, S ∩ ∂p(S ∪ T ) 6= ∅, S 6⊂ ∂p(S ∪ T ), ∂p(S ∪ T ) 6⊂ S,

• (XS − XS∪T )X∂p(S∪T ), |(S ∪ T ) \ S| = 1, p ≥ 1,
S ∩ ∂p(S ∪ T ) 6= ∅, S 6⊂ ∂p(S ∪ T ), ∂p(S ∪ T ) 6⊂ S.

Here ∂(S) = S \ {max(S)}.
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Sketch of a proof, part 2 (combinatorial)

Let us describe all quadratic monomials that are normal with
respect to our modified set of relations, that is all quadratic
monomials that do not occur among the leading terms of those
relations. For that, we introduce a combinatorial notion.

Suppose that S and T are two proper subsets of {1, . . . , n} with
|S|, |T | ≥ 3. We shall say that T is an MI-complement (minimal
interval complement) of S if the following conditions hold
simultaneously:

• the intersection of S and T is not empty,
• T is an initial interval of S ∪ T (that is, if s ∈ S ∪ T and

s ≤ max(T ), then s ∈ T ),
• among all the initial intervals of S ∪ T of cardinality at least

three satisying the above conditions, T is the shortest one.
We shall say that T is an essential MI-complement of S if it is an
MI-complement of S and |T \ S| > 1.
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Sketch of a proof, part 2 (example)

Let n = 6.

The set T = {1, 2, 3, 4, 5} is an essential MI-complement of
S = {1, 4, 6} because it is an initial interval of
S ∪ T = {1, 2, 3, 4, 5, 6}, and S ∪ ∂(T ) = {1, 2, 3, 4, 6} 6= S ∪ T .
On the contrary, T ′ = {1, 2, 3, 4} is not an essential
MI-complement of S even though T ′ is an initial interval of
S ∪ T ′ = {1, 2, 3, 4, 6}: the problem is that
S ∪ ∂(T ′) = {1, 2, 3, 4, 6} = S ∪ T ′, so there is a shorter initial
interval that can be taken.
The set T ′′ = {1, 2, 4} is an MI-complement of S because it is an
initial interval of S ∪ T ′′ = {1, 2, 4, 6}, and it is of length three, so
there is nothing shorter; however, this MI-complement is not
essential because T ′′ \ S = {2} is a set of cardinality one.
The set U = {1, 2, 4} is an essential MI-complement of each of the
sets V ′ = {1, 5, 6}, V ′′ = {2, 5, 6}, and V ′′′ = {4, 5, 6}.
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Sketch of a proof, part 2 (combinatorial, continued)

Lemma. Suppose that S,T ⊆ {1, . . . , n} with |S|, |T | ≥ 3. A
commutative quadratic monomial XSXT is normal with respect to
the modified set of generators if and only if max(S) 6= max(T ) and
one of the following three conditions hold:

• the subsets S and T are disjoint,
• the subsets S and T are comparable,
• one of them is an essential MI-complement of the other.

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko



Sketch of a proof, part 3 (the dual space)

On the dual level, if one considers the homology, there is an
algebraic structure that assembles all the homology groups
together: an operad.

In this case, one gets the operad HyperCom
defined and studied by Getzler; it is generated by the fundamental
classes νk (one for each k ≥ 2) of homological degree 2(k − 2),
satisfying the identities

∑ a b . . .

. . . c =
∑ a c . . .

. . . b
.

Using “shuffle operads” and Gröbner bases for operads (developed
by myself and Khoroshkin in 2008), one obtains a basis B of the
corresponding operad.
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Sketch of a proof, part 3 (the dual space)

On the dual level, if one considers the homology, there is an
algebraic structure that assembles all the homology groups
together: an operad. In this case, one gets the operad HyperCom
defined and studied by Getzler; it is generated by the fundamental
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satisfying the identities
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.

Using “shuffle operads” and Gröbner bases for operads (developed
by myself and Khoroshkin in 2008), one obtains a basis B of the
corresponding operad.



Digression: shuffle tree monomials

This is a shuffle tree monomial for which the internal vertices of
the underlying tree are labelled by two binary operations {◦, •}:

•

◦

• ◦

◦ ◦ ◦

1 3 2 7 4 6

5

8

For each internal vertex, the minimal leaves of the subtrees
growing at it increase from the left to the right.
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Sketch of a proof, part 3 (basis of the dual space)

A basis B of the homology operad may be defined inductively as
follows:

• the tree
a
| without internal vertices belongs to B,

• a shuffle tree monomial
τ1 · · · τk

belongs to B if and only

if τ1, . . . , τk belong to B, and the root vertex of each of them
but τk has either just one input or at least three ones.

To build things inductively, we allow labels to come from any
totally ordered set, not just {1, . . . , n}.
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Sketch of a proof, part 3 (basis of the dual space)
This can be expressed slightly less recursively as follows. One takes
a “right comb” tree γk,`, e.g.

γ4,3 =

6 7
5

4
1 2 3

,

and grafts at its leaves certan elements of B, say τ1, . . . , τk , τk+1,
. . . , τk+`, each of which is either the trivial tree or a tree whose
root vertex has strictly more than two children.

For such tree, we let
Sp =

{
a ∈ Leaves(τ) : a ≤ min(Leaves(τp))

}
, and define

Φ(τ) = Φ(τ1) · · ·Φ(τk+`)
k∏

j=3
XSj+`

.
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Sketch of a proof, part 4 (surjection)

We shall show that Φ is a surjection from the basis of the
homology onto the set of all commutative monomials normal with
respect to our quadratic relations.

The latter means that for each
quadratic submonomial XSXT , max(S) 6= max(T ) and one of the
following three conditions hold:

• the subsets S and T are disjoint,
• the subsets S and T are comparable,
• one of them is an essential MI-complement of the other.

First, we check that Φ constructs normal monomials. Second, we
construct a right inverse Ψ, inductively. Essentially, either a normal
monomial is a product of several ones for disjoint sets, or it is
divisible by X{1,...,n}, or it has a unique divisor XS with n ∈ S, and
S 6= {1, . . . , n}; depending on this, we construct an inductive
description.
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Sketch of a proof, conclusion

Existence of right inverse implies surjectivity of Φ, so the ranks of
cohomology groups of M0,1+n are estimated from the above by
the ranks of homology groups.

Of course, we know that they are equal, so the estimate itself is
not a big deal: what is a big deal is that the estimate is sharp if
and only if our quadratic relations form a Gröbner basis,
completing the proof.
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Application
According to the theory of Koszul spaces (Berglund 2014), for a
formal space whose rational cohomology algebra is Koszul, the
Koszul dual algebra is isomorphic H•(ΩX ,Q) with the Pontryagin
product, and the latter, thanks to Milnor–Moore, is the universal
envelope U(π∗(ΩM0,1+n)⊗Q).

As a consequence, we can compute the rational homotopy Lie
algebras of our spaces.
Theorem. The rational homotopy Lie algebra π∗(ΩM0,1+n)⊗Q
is isomorphic to the graded Lie algebra generated by odd elements
YS , where S ⊆ {1, . . . , n}, |S| ≥ 3, subject to relations

[YS ,YT ] = 0, for S and T with S ∩ T = ∅,∑
{T1,T2}⊂2S :

T1∩T2 6=∅,T1∪T2=S

[YT1 ,YT2 ] = 0, for |S| > 3,

[
YT ,

∑
T∪K=S

YK

]
= 0, for S and T with T ⊂ S, |S \ T | > 1.
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Further results
A simple long overlooked observation:

Theorem. The cohomology ring H∗(XΣ,Q) of a complex smooth
projective toric variety XΣ is Koszul if and only if it is quadratic.
This includes the so called Losev–Manin spaces, and the
noncommutative generalisations of M0,1+n which are toric
varieties of the Stasheff polytopes.
Conjecture. Consider a hyperplane arrangement in P(V ). Let G
be a building set of its intersection lattice, and let Y G be the De
Concini–Procesi projective wonderful model associated to the
building set G. The ring H•(Y G ,Z) is Koszul if and only if it is
quadratic.
Another conjecture I made (including the case of the maximal
building set in the conjecture above) has already become a
theorem.
Theorem (Matthew Mastroeni and Jason McCullough,
arXiv:2111.00393). The Chow ring of any matroid is Koszul.
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That’s all folks!

Thank you for your attention!

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko

Vladimir Dotsenko


