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• Air - cont. quiver of type A W
• repair- pointwise finite represent. of AR
• repair is hereditary category
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Df • nq- cluster is a moximol E-Campobello
set of indecomposable objects, T

•better . ✗ int if ⑤
Y# ✗ such thot

(TN)UY is not- cluster
then 4 is collect mmtotiu of ✗

t.IE#a:.Y:::::::+.:.T--P--Eollimolecomp
. projective reps]

P = { Pa , Pa, , Pce} nqcluoter

g(Pa) = [Pa] , glpe,
)=[Pes]

(gl ) ,gC)7>-0
→ some oliects can be mntoteol
→ some objects cannot be mutated
e.g.① Pay can be mmtoted to Sa=V[a.a]

(PiPa)U Sa is E-compatible
proof - use g$a) = [

Pa]- [Pas] #

eg② Patannot be mutated
-



.EE?.i::aIs-m:i::eI::*:-*.
additive category .

• P- pairwise compatibility condition
• ET 3 Maximo

D- compatible sets
lie. each pair of obj. is Pcompo

!)
.

• Assamese : for eod ✗ in 1-there is at

most one Y# ✗ such that

4- \X3UY is P- compatible .

&Im%ni÷%%:;¥÷F÷
mutated cos Pa in CCAR)

Remark 2- The some ✗ might not be

Y÷÷÷÷÷f
mntobee from one tent

seenenasosmnto-t.ms

might be mutable from Q

÷ÉdilferemtT'•"cluster theory
"
- Jp (C)

• collection of nq-cluste.rs#ed-s-::-+:!::IMorphisms - generated by

maximal P- compatible sets subcategory of
• mutations when exist sets



Remo Any cluster structure
(in the sense of BIRS) defines a⑦
"
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Def . Let Jp (c) be a cluster theory

defined by the pairwise
compot:

condition P and

Let TofD) be a cluster theory
defined by the pairwise

compot:

condition Q .

A functor F: Tp(c)→Told)
is called embedding of cluster theories

if F is • injective
on objects

• injective on mutations
• respects compatibility
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TN1(C(A1))

✏✏

//

""

TN(i,1)
(C(AN(i,1)

))

✏✏

// TN(j,1)
(C(AN(j,1)

))

✏✏

**
TNm(C(Am)) // TNn(C(An))

44

**

TNR(C⇡) // TE(C(AR))

TN1(C(A1))

<<

// TN
(i,1)

(C(AN
(i,1)

)) // TN
(j,1)

(C(AN
(j,1)

))

44

TNm(C(Am)) // TNn(C(An)) //
))

TT(CZ) // TE(C(AR))

Figure 1. The conjectured embeddings of cluster theories. The theories in the diagram are the ones presented.
The integersm,n, i, j are such that 1 < m < n and 1 < i < j. We make no further assumptions aboutm,n, i, j.
The dashed arrows are the conjectured arrows. The solid arrows in the top diagram are from [R20+]. The
solid arrows in the bottom diagram are from [KMMR21+].
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A Note on upcoming revisions to [R20+].
Job D. Rock

R will expand their work [R20+] to even more type A cluster theories.
In [R20+], the following cluster theories are included.

• TNn(C(An)) from [BMR+06, CCS06]. The compatibility con-
dition Nn is non-crossing diagonals on an (n+ 3)-gon.

• TN1(C(A1)) from [HJ12]. The compatibility condition N1 is
non-crossing diagonals on the 1-gon.

• TN1(C(A1)) from [BG18]. The compatibility condition N1 is
non-crossing diagonals on the completed 1-gon.

• TNR(C⇡) from [IT15a]. The compatibility condition NR is non-
crossing geodesics on R-gon (the hyperbolic plane).

• TE(C(AR)) from [IRT20+]. The compatibility condition E is
based on the Euler product of projective resolutions.

By (n,1)-gon we mean the circle with infinitely marked points and
n accumulation points. The accumulation points are not included in
the (n,1)-gon and all accumulation points are two-sided. By com-
pleted (n,1)-gon, or (n,1)-gon, we mean the (n,1)-gon with the n
accumulation points. One may think of the 1-gon as the (1,1)-gon
and the completed 1-gon as the (1,1)-gon.

In [KMMR21+], the authors describe a way to construct a cluster
theory starting with a category D that is triangulated equivalent to
D⇡ from [IT15a]. The authors use a subcategory Z ⇢ D to construct
a category CZ ⇢ D. The compatibility condition is denoted T and is
based on tilting rectangles in CZ .

R will include the following cluster theories in the revised version of
[R20+].

• TN(n,1)
(C(AN(n,1)

)) from [IT15b]. The compatibility condition
N(n,1) is non-crossing diagonals on the (n,1)-gon. One may
think of N1 as the special case where n = 1.

• TN
(n,1)

(C(AN
(n,1)

)) from [PY21]. The compatibility condition

N(n,1) is non-crossing diagonals on the (n,1)-gon. One may
think of N1 as the special case where n = 1.

• TT(CZ) from [KMMR21+]. The compatibility condition T is
based on tilting rectangles CZ .

.

Conjecture (R.). There exist commutative diagrams of embeddings of
cluster theories as in Figure 1.
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