Pointed Hopf algebras of discrete (co)representation type

Shijie Zhu
The University of Iowa
(Joint with M. Iovanov, E.Sen, A. Sistko)

FD seminar

September 10, 2020
Notations:

- \(\mathbb{K} \) is an algebraically closed field with \(\text{char} \mathbb{K} = 0 \).
- An algebra \(A \) is basic if simple \(A \)-modules are 1 dimensional over \(\mathbb{K} \).
- A coalgebra \(C \) is pointed if simple \(C \)-comodules are 1-dimensional over \(\mathbb{K} \).
Notations:

- \(\mathbb{K} \) is an algebraically closed field with \(\text{char} \mathbb{K} = 0 \).
- An algebra \(A \) is basic if simple \(A \)-modules are 1 dimensional over \(\mathbb{K} \).
- A coalgebra \(C \) is pointed if simple \(C \)-comodules are 1-dimensional over \(\mathbb{K} \).

\[\{ \text{f.d. pointed coalgebras} \} \xrightarrow{\text{Hom}(\cdot,\mathbb{K})} \{ \text{f.d. basic algebras} \} \]
Path coalgebra:

Let $Q = (Q_0, Q_1)$ be a quiver. The path coalgebra $\mathbb{K}Q$ is spanned by all the paths in Q with comultiplication $\Delta(p) = \sum_{p = \langle p_1 | p_2 \rangle} p_1 \otimes p_2$; counit $\epsilon(e_i) = 1$ and $\epsilon(p) = 0$ for $|p| > 0$.

Rmks: 1. We use the notation $\mathbb{K}[Q]$ for path algebras.
2. For finite acyclic quiver Q, $\mathbb{K}[Q]^\ast = \mathbb{K}Q^\text{op}$.
3. But usually the algebra structure of $\mathbb{K}[Q]$ and coalgebra structure of $\mathbb{K}Q$ is not compatible. Hence cannot form a "path bialgebra."
Path coalgebra:

Let $Q = (Q_0, Q_1)$ be a quiver. The path coalgebra $\mathbb{K}Q$ is spanned by all the paths in Q with comultiplication $\Delta(p) = \sum_{p=\langle p_1 | p_2 \rangle} p_1 \otimes p_2$; counit $\epsilon(e_i) = 1$ and $\epsilon(p) = 0$ for $|p| > 0$.

Example: $Q : 3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$.

$\Delta(\langle \alpha | \beta \rangle) = e_3 \otimes \langle \alpha | \beta \rangle + \alpha \otimes \beta + \langle \alpha | \beta \rangle \otimes e_1$
Path coalgebra:

Let $Q = (Q_0, Q_1)$ be a quiver. The path coalgebra KQ is spanned by all the paths in Q with comultiplication $\Delta(p) = \sum_{p=\langle p_1 | p_2 \rangle} p_1 \otimes p_2$; counit $\epsilon(e_i) = 1$ and $\epsilon(p) = 0$ for $|p| > 0$.

Example: $Q : 3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$.

$\Delta(\langle \alpha | \beta \rangle) = e_3 \otimes \langle \alpha | \beta \rangle + \alpha \otimes \beta + \langle \alpha | \beta \rangle \otimes e_1$

Rmks: 1. We use the notation $K[Q]$ for path algebras.
2. For finite acyclic quiver Q, $K[Q]^* = KQ^{op}$.
3. But usually the algebra structure of $K[Q]$ and coalgebra structure of KQ is not compatible. Hence cannot form a “path bialgebra”.

Shijie Zhu The University of Iowa (Joint with M. Iovanov, E.Sen, A. Sistko) FD seminar

Pointed Hopf algebras of discrete (co)representation type
Theorem (Gabriel)

A basic algebra A is isomorphic to a quiver algebra $\mathbb{K}[Q]/I$ for some admissible ideal I.

Dually,

Theorem (Woodcock, 97)

A pointed coalgebra C is isomorphic to an admissible subcoalgebra of a path coalgebra $\mathbb{K}Q$.
Let C be a coalgebra
Group-like elements $G(C) = \{g \in C | \Delta(g) = g \otimes g\}$.
Skew primitive elements $P(g, h) = \{x | \Delta(x) = g \otimes x + x \otimes h\}$, where $g, h \in G(C)$.
$x \in P(g, h)$ is trivial if $x = k(g - h)$ for some $k \in \mathbb{K}$.

Shijie Zhu The University of Iowa (Joint with M. Iovanov, E.Sen, A. Sistko) FD seminar
Pointed Hopf algebras of discrete (co)representation type
Let C be a coalgebra
Group-like elements $G(C) = \{g \in C|\Delta(g) = g \otimes g\}$.
Skew primitive elements $P(g, h) = \{x|\Delta(x) = g \otimes x + x \otimes h\}$, where $g, h \in G(C)$.
$x \in P(g, h)$ is trivial if $x = k(g - h)$ for some $k \in \mathbb{K}$.

Example: $Q : 3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$.
$\Delta(e_1) = e_1 \otimes e_1$
$\Delta(\alpha) = e_3 \otimes \alpha + \alpha \otimes e_2$.
Let C be a coalgebra
Group-like elements $G(C) = \{g \in C | \Delta(g) = g \otimes g\}$.
Skew primitive elements $P(g, h) = \{x | \Delta(x) = g \otimes x + x \otimes h\}$, where $g, h \in G(C)$.
$x \in P(g, h)$ is trivial if $x = k(g - h)$ for some $k \in \mathbb{K}$.

Example: $Q : 3 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 1$.
$\Delta(e_1) = e_1 \otimes e_1$
$\Delta(\alpha) = e_3 \otimes \alpha + \alpha \otimes e_2$.

Definition

For a pointed coalgebra C, define its Ext-quiver Q as the following: Vertices = group-likes g; Number of arrows $g \to h = \dim_{\mathbb{K}} P(g, h) - 1$.
Example: Taft algebra $T_n = \langle g, x | g^n = 1, x^n = 0, gxg^{-1} = qx \rangle$, where q is a primitive $n - \text{th}$ root of unity. The coalgebra structure is given by $\Delta(g) = g \otimes g$, $\Delta(x) = 1 \otimes x + x \otimes g$.

The Ext quiver Q of T_n is
Representation types

- An algebra A is finite representation type if there are only finitely many isomorphism classes of indecomposable A-modules.
- A coalgebra C is finite corepresentation type if there are only finitely many isomorphism classes of indecomposable C-comodules.
Representation types

• An algebra A is finite representation type if there are only finitely many isomorphism classes of indecomposable A-modules.

• A coalgebra C is finite corepresentation type if there are only finitely many isomorphism classes of indecomposable C-comodules.

(For a finite dimensional coalgebra C, C is finite corepresentation type if and only if C^* is a finite representation type algebra)

• A Hopf algebra H is finite (co)-representation type if as a (co)-algebra H is finite (co)-representation type.
Some known results about finite type Hopf algebras:
When $H = kG$ for some finite group G over an algebraically closed field k.
Some known results about finite type Hopf algebras:

When $H = kG$ for some finite group G over an algebraically closed field k.

- [Maschke, 1899] When $\text{char } k \nmid |G|$, kG is semisimple. Hence it is finite representation type.

 $\#$ indecomposable kG-modules $= \#$ conjugacy classes of G.
Some known results about finite type Hopf algebras:
When $H = kG$ for some finite group G over an algebraically closed field k.

- [Maschke, 1899] When $\text{char } k \nmid |G|$, kG is semisimple. Hence it is finite representation type.
 \# indecomposable kG-modules $= \#$ conjugacy classes of G.

- [D.G.Higman 1954] When $p = \text{char } k \mid |G|$, kG is representation finite type if and only if Sylow p subgroups are cyclic.
Classification of finite-dimensional monomial Hopf algebras (over k containing all roots of unity, $\text{char} k = 0$):

A Hopf algebra is monomial if and only if it is basic and Nakayama.
Classification of finite-dimensional monomial Hopf algebras
(over k containing all roots of unity, $\text{char } k = 0$):
A Hopf algebra is monomial if and only if it is basic and Nakayama.

Classification of finite-dimensional monomial Hopf algebras
(over k with $\text{char } k = p$):
Classification of finite-dimensional (pointed) basic Hopf algebras of finite (co)representation type (over an algebraically closed field k).

A basic Hopf algebra is finite representation type if and only if it is Nakayama.
Next we consider infinite-dimensional pointed Hopf algebras.

Definition

Let C be a pointed coalgebra. We say that C is of discrete corepresentation type, if for any finite dimension vector d, there are only finitely many isoclasses of C-comodules of dimension vector d.
Next we consider infinite-dimensional pointed Hopf algebras.

Definition

Let C be a pointed coalgebra. We say that C is of discrete corepresentation type, if for any finite dimension vector d, there are only finitely many isoclasses of C-comodules of dimension vector d.

Rmks: 1. For finite-dimensional coalgebras, Brauer-Thrall conjecture \implies discrete type$=$finite type.
2. C is of discrete corepresentation type if and only if any finite dimensional subcoalgebra $D \subseteq C$ is finite corepresentation type.
Classification of coserial \(^1\) pointed Hopf algebras (over a field \(k\) containing all roots of unity).

\(^1\)A Hopf algebra \(H\) is coserial = \(H\) is a serial coalgebra = every f.d. indecomposable \(H\)-comodule is uniserial.
Classification of coserial 1 pointed Hopf algebras (over a field k containing all roots of unity).

The Ext quiver of a coserial pointed Hopf algebra is one of the following:

1. copies of a single vertex
2. copies of a complete oriented cycle,
3. copies of an infinite quiver

$\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots$.

1A Hopf algebra H is coserial \iff H is a serial coalgebra \iff every f.d. indecomposable H-comodule is uniserial.
Let H be a discrete corepresentation type pointed Hopf algebra over \mathbb{K}. First we want to classify all the possible Ext quivers Q of H.
Let H be a discrete corepresentation type pointed Hopf algebra over \mathbb{K}. First we want to classify all the possible Ext quivers Q of H.

Lemma

Let $(H, m, u, \Delta, \epsilon, S)$ be a pointed Hopf algebra and $x \in P(1, a)$ be a skew primitive. Then

1. (Translation) For any group like $g \in G(H)$, $gx \in P(g, ga)$.
2. $S(x) = -xa^{-1} \in P(a^{-1}, 1)$.

Proof.

(1) $\Delta(gx) = \Delta(g)\Delta(x) = (g \otimes g)(1 \otimes x + x \otimes a) = gx \otimes gx + gx \otimes ga$.

Apply the axiom for antipode $m(1 \otimes S)\Delta = \epsilon$ to x.

Let \(H \) be a discrete corepresentation type pointed Hopf algebra over \(\mathbb{K} \). First we want to classify all the possible Ext quivers \(Q \) of \(H \).

Lemma

Let \((H, m, u, \Delta, \epsilon, S)\) be a pointed Hopf algebra and \(x \in P(1, a) \) be a skew primitive. Then

1. **(Translation)** For any group like \(g \in G(H) \), \(gx \in P(g, ga) \).
2. \(S(x) = -xa^{-1} \in P(a^{-1}, 1) \).

Proof.

1. \(\Delta(gx) = \Delta(g)\Delta(x) = (g \otimes g)(1 \otimes x + x \otimes a) = g \otimes gx + gx \otimes ga \).
2. Apply the axiom for antipode \(m(1 \otimes S)\Delta = \epsilon \) to \(x \).
Corollary

If H is a pointed Hopf algebra, then its Ext quiver Q is homogeneous. i.e. for each vertex v

arrows coming out of v = # arrows going into v = N.

Shijie Zhu The University of Iowa (Joint with M. Iovanov, E.Sen, A. Sistko)
FD seminar
Pointed Hopf algebras of discrete (co)representation type
Corollary

If H is a pointed Hopf algebra, then its Ext quiver Q is homogeneous. i.e. for each vertex v\n
arrows coming out of v = # arrows going into v = N.

If H is discrete corepresentation type, then Q must be Schurian. i.e. no multiple arrows between any two vertices. Otherwise,

\[
\bullet \quad \Rightarrow \quad \bullet \quad \subseteq \quad H
\]

\[\implies H \text{ is not discrete corepresentation type}.\]
If $N \geq 4$ and no loop, then $\cup H \notin H \Rightarrow H$ is not discrete corepresentation type.
If there are two arrows $a \xleftarrow{\times} 1 \xrightarrow{\cdot} b$, then $ab = ba$. Otherwise, by translation

$$
\begin{array}{c}
a \\
\downarrow ay \\
ab
\end{array}
\begin{array}{c}
\downarrow xa \\
ba
\end{array}
\begin{array}{c}
\downarrow xb \\
ya
\end{array}
\begin{array}{c}
b \\
\downarrow \subset H
\end{array}

\implies H \text{ is not discrete corepresentation type.}
Proposition

If H is discrete corepresentation type, then $N < 3$.

Proof. If there are 3 outgoing arrows from 1 say to a, b, c, then $a\xrightarrow{ab} b\xrightarrow{bc} c\xrightarrow{ca} a \subseteq H$.

Case 1. If all vertices are mutually distinct: $= \Rightarrow H$ is not discrete corepresentation type.

Case 2. Not vertices are mutually distinct: Use "covering map" of coalgebras and reduce to Case 1.
Proposition

If H is discrete corepresentation type, then $N < 3$.

Proof. If there are 3 outgoing arrows from 1 say to a, b, c, then

$$
\begin{array}{c}
a \rightarrow ay \quad ab \\
z \quad \quad \quad xb \\
ca \\
x \quad \quad \quad bz \\
c \rightarrow yc \quad bc
\end{array}
$$

Case 1. If all vertices are mutually distinct: $= \Rightarrow H$ is not discrete corepresentation type.

Case 2. Not vertices are mutually distinct: Use "covering map" of coalgebras and reduce to Case 1.
Proposition

If H is discrete corepresentation type, then $N < 3$.

Proof. If there are 3 outgoing arrows from 1 say to a, b, c, then

![Diagram showing arrows between vertices labeled a, b, c and ab, bc, ca]

Case 1. If all vertices are mutually distinct: $\implies H$ is not discrete corepresentation type.
Proposition

If \(H \) *is discrete corepresentation type, then* \(N < 3 \).

Proof. If there are 3 outgoing arrows from 1 say to \(a, b, c \), then

\[
\begin{align*}
 a & \rightarrow ab \\
 z\uparrow & \quad \downarrow x \quad b \\
 ca & \quad \downarrow \quad b \quad \downarrow \quad bc \\
 c & \quad \rightarrow yc
\end{align*}
\]

Case 1. If all vertices are mutually distinct: \(\implies \) \(H \) is not discrete corepresentation type.

Case 2. Not vertices are mutually distinct: Use “covering map” of coalgebras and reduce to Case 1.
Definitions:

- A (s-t)-diamond in $C \subseteq \mathbb{K}Q$ is a linear combination of paths starting from s and ending in t.
- A diamond basis of C is a basis containing only diamonds as well as containing all vertices and arrows.
- Any finite dimensional pointed coalgebra has a diamond basis [JMR].
- A covering map $f : C \rightarrow D$ is a coalgebra homomorphism, which (1) sends a diamond basis of C to a diamond basis of D; (2) sends diamonds sharing same start vertex or terminal vertex to the same diamond.
- If $f : C \rightarrow D$ is a covering map, then $f^* : D^* \rightarrow C^*$ is a separable extension of algebras. Hence preserving finite representation types [IS, ISSZ].
Theorem (Iovanov, Sen, Sistko, Zhu)

If H is a connected pointed Hopf algebras of discrete representation type, then the Ext quiver of H is one of following:

(0) A single vertex.

(1) A complete oriented cycle;

(2) \[\cdots \rightarrow \cdot \rightarrow \cdot \rightarrow \cdots; \]

(3) \[\cdots \begin{array}{ccc}
\vdots & \vdots & \vdots \\
\vdots & y^2 \rightarrow b^2 & \rightarrow \cdot \\
\vdots & y \rightarrow b & \rightarrow ab \\
\vdots & x \rightarrow 1 & \rightarrow a \\
\vdots & x^2 \rightarrow a^2 & \rightarrow \cdot \\
\vdots & \vdots & \vdots \\
\end{array} \rightarrow \cdots \]
(4) The quiver in (3) identifying vertices $a^m = b^n$. (The quiver looks like a tube.)
(4) The quiver in (3) identifying vertices $a^m = b^n$. (The quiver looks like a tube.)

Computing algebra structures for case (3) and (4):

$H_{m,n}^m(\lambda, s, t, k)$ is generated by a, b, x, y satisfying the following conditions, where $\lambda \neq 0, s, t, k \in \mathbb{K}$ (\mathbb{K} algebraically closed, char $\mathbb{K}=0$).

\[
\begin{align*}
ab &= ba, \quad a^m = b^n, \quad xy + \lambda yx = k(1 - ab), \\
ax + xa &= 0, \quad \lambda bx + xb = 0, \quad x^2 = s(1 - a^2), \\
by + yb &= 0, \quad ay + \lambda ya = 0, \quad y^2 = t(1 - b^2); \\
\Delta(a) &= a \otimes a, \quad \Delta(b) = b \otimes b, \\
\Delta(x) &= 1 \otimes x + x \otimes a, \quad \Delta(y) = 1 \otimes y + y \otimes b; \\
\epsilon(a) &= \epsilon(b) = 1, \quad \epsilon(x) = (y) = 0; \\
S(a) &= a^{-1}, \quad S(b) = b^{-1}, \quad S(x) = -xa^{-1}, \quad S(y) = -yb^{-1}.
\end{align*}
\]

