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Some introductory comments

In this talk k will always be a field and A a finite dimensional k-algebra
unless otherwise stated.
Han’s conjecture relates two homological invariants ofA: its global dimension
and its Hochschild homology. More precisely:

Conjecture
(We will say that A is smooth if gldim(A) <∞).

A is smooth ⇐⇒ ∃n|HHi(A) = 0 ∀i > n.

Remark
The right hand condition actually implies that HHi(A) = 0 for all i > 0,
using a result by Keller, relating Hochschild and cyclic homology.
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Non exhaustive list of cases for which the conjecture is known to be true:
I A commutative, not necessarily f.d. but finitely generated

(Avramov-Vigué, BACH).
I A monomial (Han).
I (char(k) = 0), A Koszul + other families of local graded algebras

(Bergh-Madsen) and more recently, without hypothesis on char(k)
for trivial extensions of graded algebras.

I Quantum complete intersections (Bergh-Erdmann).
I k〈x1, . . . , xn〉/(f1, . . . , fp) non necessarily fin. dim. with
f1 ∈ k[x1], fi ∈ (x2, . . . , xn),∀i ≥ 2 (S-Vigué).

I GWA (S., Suárez Alvarez, Vivas).



Commutative case

In this case, HHn(A) =
⊕n

i=1 HH(i)
n (A) such that HH(n)

n (A) = ΛnΩ1
A/k

(exterior power of Kähler differentials) and

HH(1)
n (A) = Dn−1(A/k) ∼= Harrn(A)

(where Dn−1(A/k) is André-Quillen homology and Harrn(A) is Harrison
homology).

André-Quillen homology satisfies a Jacobi-Zariski long exact sequence,
which can be considered a "change of rings" sequence. Its annihilation is
closely related to the smoothness of A. In fact, if A is smooth, HHn(A) =
HH(n)

n (A) (HKR).
In the non commutative setting A-Q homology does not exist but Kaygun
has obtained a J-Z sequence for any extension of k-algebras B ⊂ A such
that A is B-flat. This is a quite restrictive hypothesis which made us think
about possible generalizations.
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Our results

We recover a Jacobi-Zariski long exact sequence involving Hochschild
homology and relative Hochschild homology.

In the first part I will explain our main result to appear in Pacific J. Math.
where we prove that the class H of finite dimensional algebras which verify
Han’s conjecture is closed under split bounded extensions (to be defined
later). More precisely if A = B ⊕M is such an extension, then

A ∈ H ⇐⇒ B ∈ H.

In the second part I will talk about a generalization of this result for A non
necessarily split.
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Split extensions

We consider algebras of type A = B ⊕M , where B is a subalgebra and
M a two-sided ideal and we prove that under certain hypotheses on M ,
the algebra A satisfies Han’s conjecture if and only if B does.

Our tools:
I relative homology and reduced bar resolution.
I Jacobi-Zariski long exact sequence if:

I ∃n ∈ N such that M⊗Bn = 0 -in this case we will say that M is
B-tensor nilpotent-,

I pdimBMB <∞,
I either BM or MB is projective.

If these conditions hold we will say that A = B ⊕M is a bounded
split extension.
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A = kQ/ 〈R〉 with R = {a1a6}, B = kQ′.
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A = kQ/ 〈R〉 with R = {ab}. We can choose:
1. B1 = kQ0 ⊕ k · a and M1 = 〈b〉 or
2. B2 = kQ0 ⊕ k · b and M2 = 〈a〉

but not

3. B = kQ0 and M = 〈a, b〉 because it is not B-tensor nilpotent.
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A = kQ/ 〈R〉 with R = {ba, ab}. Here we cannot choose B = kQ0 and
M = 〈a, b〉 because it is not B-tensor nilpotent, and we can neither
choose M1 = 〈b〉 nor M2 = 〈a〉 because it is neither left nor right

B-projective.



Relative homology
Relative homology was already defined by Hochschild but has not yet
received much attention.

Let B ⊂ A be an extension of k-algebras. We consider the exact category
of A-modules with respect to B-split exact sequences,
I relative projectives: A-modules P such that any A-morphism
X → P which has a B-section has an A-section. They are exactly
the direct summands of the induced modules . There are enough
relative projectives so we can do homological algebra,

I relative projective resolutions:

· · · d→ P2
d→ P1

d→ P0 → X → 0

where each Pi is a relative projective A-module, the d’s are
A-morphisms, d2 = 0 and there exists a B-contracting homotopy, so
TorA|B∗ (X,Y ) is well defined.

Definition
The Hochschild homology of A relative to B with coefficients in an
A-bimodule X is H∗(A|B,X) = TorA

e|Be

∗ (X,A).
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Recall: B ⊂ A is split if ∃π : A → B morphism of algebras such that
π(b) = b,∀b ∈ B.
Examples
I Given an algebra B and a B-bimodule N , consider
T = TB(N) = B ⊕ N ⊕ N ⊗B N ⊕ · · · . Then T = B ⊕ T>0, is
a split extension. Moreover, if J ⊂ T>0 is a two-sided ideal of T ,
then B ⊂ T/J is a split extension as well.

I B = kQ0 ⊂ kQ/I with I admissible.
I B = kQ/I bound quiver algebra, F finite set of new arrows with

two maps s, t : F → Q0. Let QF be the quiver such that
(QF )0 = Q0 and (QF )1 = Q1 t F .
If BF = kQF /〈I〉kQF

, then BF = TB(N) where

N =
⊕
a∈F

Bt(a)⊗ s(a)B.

Let J ⊂ B>0
F be a two-sided ideal of BF . The algebra

A = BF /J = B ⊕ (B>0
F /J)

is also a split extension.



The reduced resolution of a split extension
Theorem
Let A = B ⊕M be a split extension of algebras. There is a reduced
relative bar resolution of A as A-bimodule

· · · d→ A⊗B M⊗Bn ⊗B A
d→ · · · d→ A⊗B M ⊗B A

d→ A⊗B A
d→ A→ 0

where the formulas for the d’s are those of the ordinary bar resolution.

Remark
We already know this resolution for B = kQ0 and M the Jacobson
radical of A, where A = kQ/I is a bound quiver algebra.

Idea of proof contracting homotopy t (left B-linear and right A-linear),
t(a1⊗m2⊗· · ·⊗mn+1⊗an+2) = 1⊗ (a1)M ⊗m2⊗· · ·⊗mn+1⊗an+2.

Corollary
If M is B-tensor nilpotent and X is an A-bimodule, then in large enough
degrees

H∗(A|B,X) = 0 and H∗(A|B,X) = 0.

This happens for example when A = kQ0 ⊕M and Q does not contain
oriented cycles.
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Relation between relative and usual Hochschild homology

Proposition
Let A = B ⊕M be a split extension of algebras, and let X be an
A-bimodule. For ∗ ≥ 1, there is a sequence of chain complexes

0→ C∗(B,X) ι→ C∗(A,X) κ→ CM∗ (A|B,X)→ 0

where ι is injective, κ is surjective and κι = 0.
In degree 0 we have the sequence

0→ X
1→ X → XB → 0.

This led us to consider nearly exact sequences.



Nearly exact sequences

Definition
A sequence of chain complexes concentrated in non negative degrees

0→ C∗
ι→ D∗

κ→ E∗ → 0

is nearly exact if:
1. ι is injective,
2. κ is surjective,
3. κι = 0,

If moreover the following condition holds:
4. the chain complex Kerκ/ Im ι with boundary induced by the

boundary of D is exact in degrees ≥ m.
The sequence is m-nearly exact.



Theorem
Given an m-nearly exact sequence of chain complexes

0→ C∗
ι→ D∗

κ→ E∗ → 0,

there is a long exact sequence as follows:

· · · → Hm+1(C) ι→ Hm+1(D) κ→ Hm+1(E) δ→ Hm(C)→Hm(D).

Idea of proof: Filter the bicomplex by rows, then by columns and consider
the corresponding spectral sequence.

Why is this useful for us? Because using another spectral sequences
argument we obtain the desired relation between relative and usual Hochschild
homologies.
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Theorem
Let A = B ⊕M be a split bounded extension. Let n be the index of
B-tensor nilpotency of M and let u = pdimBeM . For any A-bimodule
X, there is a Jacobi-Zariski long exact sequence as follows:

· · · → Hnu+1(A,X) κ→ Hnu+1(A|B,X) δ→ Hnu(B,X) ι→ Hnu(A,X)

So we get

Theorem
Let A = B ⊕M be a split bounded extension of finite dimensional
algebras. We have:

A ∈ H ⇐⇒ B ∈ H.

More precisely we prove
1. H∗(A,A) = 0 for all ∗ >> 0 ⇐⇒ H∗(B,B) = 0 for all ∗ >> 0.
2. A is smooth if and only if B is smooth.
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Non split extensions

We would like to be able to use this procedure for other families of algebras
and in order to do so we need to get rid of the splitting hypothesis.

Which object will play the role of M? Of course A/B is available but
in the non split case it is no longer possible to consider it as an ideal of
A complementing B. However, we are still able to construct a reduced
relative resolution, just replacing M by A/B.
Caution! A/B has no multiplicative structure. So, even if each summand
appearing in the differential d : A ⊗B (A/B)⊗Bn+1 ⊗B A → A ⊗B
(A/B)⊗Bn ⊗B A is not well defined, the complete expression of d is well-
defined indeed. The differential is:

d(a0 ⊗ α1 ⊗ · · · ⊗ αn−1 ⊗ an) = a0σ(α1)⊗ · · · ⊗ αn−1 ⊗ an+
n−2∑
i=1

(−1)ia0⊗· · ·⊗π(σ(αi)σ(αi+1))⊗· · ·⊗an+(−1)n−1a0⊗α1⊗· · ·⊗σ(αn−1)an

where σ is a k-linear section of π.
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Now, we have a short nearly exact sequence as in the split case and the
corresponding spectral sequence converges to the homology of the complex
(Kerκ/ Im ι)∗ (possibly non zero in infinitely many degrees).

In particular we get a long nearly exact sequence (meaning that it is exact
except maybe at H∗(A,X))

· · · → Hi(B,X) ι→ Hi(A,X) κ→ Hi(A|B,X) δ→ Hi−1(B,X)→ · · · → H1(A|B,X)

From this, we are able to consider situations like those appearing in the
following examples.
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B corresponds to the first quiver and A to the second one with the
commutation relation a2a1 − a3a4. Here

B(A/B)B = 〈a4〉 =B (S3 ⊗ P1)B ,

so it is right B-projective and it is B-tensor nilpotent.
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B(A/B)B = 〈a4, a
′
4〉 =B (S3 ⊗ P1)2

B ,

so it is right B-projective and it is B-tensor nilpotent.



Example
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B corresponds to the first quiver and A to the second one with the
commutation relation a2a1a0 − a3a4a0 = 0. Here

B(A/B)B = 〈a4〉.

It is B-tensor nilpotent but it is neither projective as right nor as left
B-module since

B(A/B) = S3 ⊕ P3 and (A/B)B = S1 ⊕ P1.



Thank you!
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