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Quivers and algebras
Path algebra
A quiver is a pair of (finite) sets Q1,Q0 of arrows and vertices, respectively,
and morphisms s, t : Q1 → Q0. For K a field, the path algebra KQ is the
K -algebra with basis given by paths in Q including paths e i of length zero
at each i ∈ Q0. Multiplication is given by concatenation of paths.

The dimension vector of a KQ-module ρ is the tuple
dimQ(ρ) := (e i ·ρ)i∈Q0 ∈ NQ0 .
The doubled quiver Q is obtained by adding an arrow a∗ for each
a ∈ Q1 and setting s(a∗) = t(a) and t(a∗) = s(a).
The preprojective algebra ΠQ is the quotient CQ/〈

∑
a∈Q1

[a, a∗]〉

Example

Consider the Jordan quiver: • a
yy

. Then CQ = C〈a, a∗〉 and
ΠQ = C〈a, a∗〉/〈[a, a∗]〉 ∼= C[a, a∗].
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Spaces of representations
Fix a quiver Q and dimension vector d ∈ NQ0 . Set

Repd(Q) :=
∏
a∈Q1

Hom(Cds(a) ,Cdt(a))

which is acted on by GLd :=
∏

i∈Q0
GLdi (C). Then

{GLd -orbits}1:1
⇔{d-dimensional CQ-modules}/ ∼iso

Repd(Q) ∼= T∗ Repd(Q) admits the (co)moment map µQ,d to
gld :=

∏
i∈Q0

Matdi×di (C):

Repd(Q) 3 ρ 7→
∑
a∈Q1

[ρ(a), ρ(a∗)] ∈ gld

Repd(ΠQ) := µ−1
Q,d(0) ⊂ Repd(Q) is the subspace of ΠQ -modules.

We could consider the stack Md(ΠQ) = µ−1
Q,d(0)/GLd. It is highly

singular, and highly stacky. E.g. for Q the Jordan quiver Repd(ΠQ) is
the stack of pairs of commuting d × d-matrices, which at
(0d×d , 0d×d), is very singular, with stabilizer GLd .
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Nakajima quiver varieties
Framed quiver

Let f ∈ NQ0 be a “framing” dimension vector. We define Qf by setting

(Qf)0 := Q0
∐
{∞}; (Qf)1 := Q1

∐
{ri ,m|i ∈ Q0, 1 ≤ m ≤ fi}.

s(ri ,m) =∞ and t(ri ,m) = i .

Definition
We define NQ(f, d) := µ−1

Qf ,(d,1)(0)st/GLd. The “st” means we only consider
the stable locus: those ΠQf modules ρ that are generated by e∞ ·ρ ∼= C.

Key fact(s): NQ(f, d) is a smooth variety.

Example

Let Q be the Jordan quiver, set f = 1. Then Qf is the ADHM quiver, and
NQ(f, d) ∼= Hilbd(A2).
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Some geometric representation theory
Fix a quiver Q and f ∈ NQ0 . Set MQ,f :=

⊕
d∈NQ0 H(NQ(f, d),Q)

Theorem (Grojnowski, Nakajima)
Let Q = •

yy
be the Jordan quiver, and set f = 1. We’ve seen that

NQ(1, d) ∼= Hilbd(A2). The N = NQ0-graded vector space MQ,1 carries an
action of an infinite-dimensional Heisenberg algebra heis∞, and is an
irreducible lowest weight module.

Given Q a quiver without loops we may define the Kac–Moody Lie algebra
gQ ∼= n−Q ⊕ hQ ⊕ n+

Q . The positive part n+
Q is free Lie algebra generated by

one (Chevalley) generator for each i ∈ Q0, subject to the Serre relations.

Theorem (Nakajima)
Let Q be a quiver without loops. Then MQ,f is a gQ -module, and
Mlowest
Q,f :=

⊕
d∈NQ0 Hlowest(NQ(f, d),Q) is an irreducible lowest weight

module, with lowest weight dependent on f.
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Deformations
Let N0

Q(f, d) be the affinization of NQ(f, d). E.g. if Q is the Jordan
quiver and f = 1 then N0

Q(f, d) = Symd(A2). In general the morphism
π : NQ(f, d)→ N0

Q(f, d) is a resolution of singularities.
This morphism admits a “universal deformation”:

NQ(f, d) ÑQ(f, d)

N0
Q(f, d) Ñ

0
Q(f, d)

{0} AQ0

π π̃
y

y

For generic x ∈ AQ0 the morphism π̃x : ÑQ(f, d)x → Ñ
0
Q(f, d)x

obtained by base change along {x} ↪→ AQ0 is an isomorphism of affine
varieties.

Ben Davison Okounkov’s conjecture via gΠQ
6 / 17



Torus action
Let f = f ′ + f ′′ be a decomposition of f ∈ NQ0 , with f ′, f ′′ ∈ NQ0 \ {0}. We
let C∗ act on quiver varieties by scaling ri ,1, . . . , ri ,f ′i with weight ±1,
r∗i ,1, . . . , r

∗
i ,f ′i

with weight ∓1, and leaving all other arrows invariant.

Proposition

There is an identification NQ(f, d)C∗ =
∐

d′+d′′=d NQ(f ′, d′)× NQ(f ′′, d′′)
given by taking direct sums.

Define Att± ⊂ NQ(f, d) to be the subset of ρ for which limt 7→0 t · ρ
exists.
NB: the morphism
limt 7→0(t · −) : Att± → NQ(f, d)C∗

might not be continuous!!
But the morphism limt 7→0(t · −) : Att±x → NQ(f, d)C∗

x is continuous,
for generic x ∈ AQ0 .
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Stable envelopes

For generic x we consider the closed embedding(s)

Att±x → ÑQ(f, d)C∗
x × ÑQ(f, d)x

ρ 7→ ( lim
t 7→0

t · ρ, ρ)

Maulik and Okounkov define
L± = limx 7→0[Att±x ] ∈ HC∗×T (NQ(f, d)C∗ × NQ(f, d),Q)
(T is a choice of extra torus acting by scaling arrows of Qf)
The two morphisms defined by these correspondences

Stab± : HC∗×T (NQ(f, d)C∗ ,Q)→ HC∗×T (NQ(f, d),Q)

become invertible after tensoring with Frac(HC∗) = Q(a), where
HC∗ = Q[a] is the C∗-equivariant cohomology of a point.
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R-matrices
Definition
For f ′, f ′′ ∈ NQ0 the R-matrix is defined as

R(a) = (Stab−)−1 ◦ Stab+ ∈ EndHT
(MQ,f′ ⊗HT

MQ,f′′)⊗ Q(a)

Basic properties
Expanding in powers of a−1

R(a) = id +~a−1r + ~O(a−2)

where ~ is the T -weight of the symplectic form on NQ(f, d) and
r ∈ EndHT

(MQ,f′ ⊗HT
MQ,f′′) is the “classical r-matrix”. So to get an

interesting R-matrix we must pick nontrivial T .
The R-matrix satisfies the Yang-Baxter equation
R12(a1)R13(a1 + a2)R23(a2) = R23(a2)R13(a1 + a2)R12(a1), the
fundamental relation in integrable systems, responsible for producing
e.g. knot invariants out of quantum groups.
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Yangians
Given g ∈ EndHT

(MQ,f′)[a], written as 〈g1|⊗|g2〉 with g2 ∈ MQ,f′ [a]
and g1 in the dual M∨Q,f′ , we define

E f′′(g) = Resa((〈g1|⊗−) ◦ R ◦ (|g2〉 ⊗ −)) ∈ End(MQ,f′′)

MO define YQ ⊂
⊕

f′′∈NQ0 End(MQ,f′′) to be the subalgebra generated
by all E (g) :=

⊕
f′′∈NQ0 E f′′(g).

Similarly, they define gMOQ ⊂
⊕

f′′∈NQ0 End(MQ,f′′) to be vector space
generated by E (g) with g constant in a.

Theorem (Maulik–Okounkov)

The ZQ0-graded HT -module gMOQ is closed under commutator.
Each summand gMOQ,d is free of finite rank.

The morphism Sym(gMOQ ⊗ Q[a])→ YQ is an isomorphism.
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A representation theoretic hint

The morphism
π : NQ(f, d)→ N0

Q(f, d)

is a projective morphism from a smooth variety. So the BBDG
decomposition theorem applies, and we can write

π∗QNQ(f,d)[d ] = ICN0
Q(f,d)⊕ . . .

as a direct sum of perverse sheaves (d = dim(NQ(f, d)). In particular.
IH∗(N0

Q(f, d)) ⊂ MQ,f

Lowering operators in gMOQ lift to morphisms of perverse sheaves
π∗QNQ(f,d)[d ]→ πC∗

∗ QNC∗
Q (f,d)[dC∗ ].

So IH∗(N0
Q(f, d)) ⊂ MQ,f is a space of lowest weight vectors for

support reasons...
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Okounkov’s conjecture
Definition-Theorem (Kac)

For any quiver Q and dimension vector d ∈ NQ0 there is a polynomial
aQ,d(t) ∈ Z[t] (the Kac polynomial) such that if q = pn is a prime power,

aQ,d(q) = #{absolutely indecomposable
d-dimensional FqQ-modules}/ ∼

iso

Conjecture (Maulik–Okounkov)

∃ isomorphism of Lie algebras gMO,TQ
∼= g′ MOQ ⊗ HT for g′ MOQ defined over Q.

Conjecture (Okounkov)

There is an equality aQ,d(t−1) =
∑

n∈Z dim(g′ MO,nQ,d )tn/2.

Maulik–Okounkov proved the conjectures when Q is the Jordan quiver.
McBreen explicitly described the Yangian in the case Q an ADE
Dynkin diagram, his results imply the conjecture for these quivers.
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Preprojective CoHA
Define AΠQ ,d := HBM(Md(ΠQ),Q) and AΠQ

:=
⊕

d∈NQ0 AΠQ ,d
We consider the usual correspondence diagram
M(ΠQ)×M(ΠQ)

π1×π3←−−−− Exact(ΠQ)
π2−→M(ΠQ) where πn maps

(ρ1 → ρ2 → ρ3) 7→ ρn.
(Schiffmann–Vasserot, Yang–Zhao): pullback along π1 × π3 and push
forward along π2 yields a morphism AΠQ ,d′ ⊗AΠQ ,d′′ → AΠQ ,d′+d′′

making AΠQ
into a NQ0-graded, cohomologically graded algebra.

Theorem (-, Meinhardt)

There is a Lie sub-algebra n+
ΠQ
⊂ AΠQ

and a HC∗ = Q[a]-action on AΠQ

such that Sym(n+
ΠQ
⊗ Q[a])→ AΠQ

is a PBW isomorphism.

Theorem (-)

There is an equality of characteristic functions χt1/2(n+
ΠQ ,d

) = aQ,d(t−1)

Conjecture *: There is an isomorphism of Lie algebras nMO,+Q
∼= n+

ΠQ
⊗ HT .
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The decomposition theorem
There is a canonical affinization map JH : M(ΠQ)→M(ΠQ), where
M(ΠQ) is the coarse moduli space; points ofM(ΠQ) are in bijection
with semisimple ΠQ -modules.
One definition of HBM(M(ΠQ),Q) is as the derived global sections of
the Verdier dual of the constant sheaf DQM(ΠQ).
Factoring the structure morphism M(ΠQ)→ pt through JH, we find
HBM(M(ΠQ),Q) ∼= H(M(ΠQ), JH∗ DQM(ΠQ))

Theorem (Decomposition theorem (-))

JH∗ DQ(vir)
M(ΠQ)

∼=
⊕

n∈2·N
pHn(JH∗ DQ(vir)

M(ΠQ))[−n]. Setting
pA0

ΠQ
= H(M(ΠQ), pH0(JH∗ DQ(vir)

M(ΠQ))) ⊂ AΠQ
, we obtain the subalgebra

pA0
ΠQ

∼= U(n+
ΠQ

)

In (something like) English, the theorem tells us that the BPS Lie algebra
can be lifted to an algebra object in the category of perverse sheaves on
the coarse moduli spaceM(ΠQ).
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Structure theorem
Let Q be a quiver and pick d ∈ NQ0 such that there exists a simple
d-dimensional ΠQ -module. Then by the decomposition theorem there is a
unique summand

IH∗(Md(ΠQ)) ⊂ n+
ΠQ ,d

which is primitive (for support reasons).

Theorem (-,Hennecart,Schlegel-Mejia)

Assume that Q has no isotropic roots, then n+
ΠQ

is one half of a generalised
Kac–Moody Lie algebra gΠQ

, with Chevalley generators given by the above
intersection cohomology groups.

(With isotropic roots the statement is just a little more complicated.)

Proposition

There is a natural isomorphism n+
ΠQf ,(d,1)

∼= H(NQ(f, d),Q). Via the
isomorphisms gΠQ ,•

∼= gΠQf ,(•,0) we get a gΠQ ,•-action on gΠQf ,(•,1)
∼= MQ,f .
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The main theorem (with Tommaso Botta)
For (xi )i∈Q0 ∈ AQ0 we define the deformed stack Md(ΠQ)x in analogy
with deformed Nakajima quiver varieties NQ(f, d)x .
For generic x we have (almost) diagonal embedding
∆x : NQ(f, d)x ↪→ NQ(f, d)x ×M(d,1)(ΠQf )x
We define the nonabelian stable envelope via the correspondence
limx 7→0[NQ(f, d)x ] ∈ H(NQ(f, d),Q)⊗ HBM(M(d,1)(ΠQf ,Q)

Ψf : MQ,f →
⊕

d∈NQ0

AΠQf ,(d,1)

(Defined also for T -equivariant versions).
Theorem (Botta,-)

The morphism Ψf induces an isomorphism MQ,f → n+
ΠQf ,(•,1), sending

lowest weight vectors to Chevalley raising operators.
Both gMOQ and gΠQ

are realised as Lie subalgebras of⊕
f∈NQ0 End(n+

ΠQf ,(•,1)), and are the same subalgebras ⇒
*+MO+Okounkov conjectures hold.
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Thank you!

That’s it, thanks for listening!!
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