Okounkov's conjecture via BPS Lie algebras

Ben Davison University of Edinburgh

Quivers and algebras

Path algebra

A *quiver* is a pair of (finite) sets Q_1, Q_0 of arrows and vertices, respectively, and morphisms $s, t: Q_1 \rightarrow Q_0$. For K a field, the path algebra KQ is the K-algebra with basis given by paths in Q including paths e_i of length zero at each $i \in Q_0$. Multiplication is given by concatenation of paths.

- The dimension vector of a KQ-module ρ is the tuple $\dim_Q(\rho) := (\mathbf{e}_i \cdot \rho)_{i \in Q_0} \in \mathbb{N}^{Q_0}$.
- The *doubled* quiver \overline{Q} is obtained by adding an arrow a^* for each $a \in Q_1$ and setting $s(a^*) = t(a)$ and $t(a^*) = s(a)$.
- The preprojective algebra Π_Q is the quotient $\mathbb{C}\overline{Q}/\langle \sum_{a \in Q_1} [a, a^*] \rangle$

Example

Consider the Jordan quiver: •
$$a$$
. Then $\mathbb{C}\overline{Q} = \mathbb{C}\langle a, a^* \rangle$ and $\Pi_Q = \mathbb{C}\langle a, a^* \rangle / \langle [a, a^*] \rangle \cong \mathbb{C}[a, a^*].$

Spaces of representations

• Fix a quiver Q and dimension vector $d \in \mathbb{N}^{Q_0}$. Set

$$\mathsf{Rep}_{\mathsf{d}}(Q) \coloneqq \prod_{a \in Q_1} \mathsf{Hom}(\mathbb{C}^{\mathsf{d}_{s(a)}}, \mathbb{C}^{\mathsf{d}_{t(a)}})$$

which is acted on by $\mathsf{GL}_d \coloneqq \prod_{i \in Q_0} \mathsf{GL}_{d_i}(\mathbb{C})$. Then $\{\mathsf{GL}_d \operatorname{-orbits}\}^{1:1}_{\Leftrightarrow} \{\mathsf{d}\operatorname{-dimensional } \mathbb{C}Q\operatorname{-modules}\} / \sim^{\mathrm{iso}}$

• $\operatorname{Rep}_{d}(\overline{Q}) \cong \operatorname{T}^{*}\operatorname{Rep}_{d}(Q)$ admits the (co)moment map $\mu_{Q,d}$ to $\mathfrak{gl}_{d} := \prod_{i \in Q_{0}} \operatorname{Mat}_{d_{i} \times d_{i}}(\mathbb{C})$:

$$\mathsf{Rep}_{\mathsf{d}}(\overline{Q})
i
ho \mapsto \sum_{\mathsf{a} \in Q_1} [
ho(\mathsf{a}),
ho(\mathsf{a}^*)] \in \mathfrak{gl}_{\mathsf{d}}$$

- $\operatorname{Rep}_{d}(\Pi_{Q}) \coloneqq \mu_{Q,d}^{-1}(0) \subset \operatorname{Rep}_{d}(\overline{Q})$ is the subspace of Π_{Q} -modules.
- We could consider the stack M_d(Π_Q) = μ⁻¹_{Q,d}(0)/GL_d. It is highly singular, and highly stacky. E.g. for Q the Jordan quiver Rep_d(Π_Q) is the stack of pairs of commuting d × d-matrices, which at (0_{d×d}, 0_{d×d}), is very singular, with stabilizer GL_d.

Nakajima quiver varieties Framed quiver

Let $f \in \mathbb{N}^{Q_0}$ be a "framing" dimension vector. We define Q_f by setting

$$(Q_{\mathsf{f}})_0 \coloneqq Q_0 \coprod \{\infty\}; \qquad (Q_{\mathsf{f}})_1 \coloneqq Q_1 \coprod \{r_{i,m} | i \in Q_0, 1 \le m \le \mathsf{f}_i\}.$$

$$s(r_{i,m}) = \infty$$
 and $t(r_{i,m}) = i$.

Definition

We define $N_Q(f, d) := \mu_{Q_f,(d,1)}^{-1}(0)^{st} / GL_d$. The "st" means we only consider the stable locus: those Π_{Q_f} modules ρ that are generated by $\boldsymbol{e}_{\infty} \cdot \rho \cong \mathbb{C}$.

Key fact(s): $N_Q(f, d)$ is a smooth variety.

Example

Let Q be the Jordan quiver, set f=1. Then $\overline{Q_f}$ is the ADHM quiver, and $N_Q(f,d)\cong Hilb_d(\mathbb{A}^2).$

Some geometric representation theory

Fix a quiver Q and $f \in \mathbb{N}^{Q_0}$. Set $\mathbb{M}_{Q,f} := \bigoplus_{d \in \mathbb{N}^{Q_0}} H(N_Q(f,d),\mathbb{Q})$

Theorem (Grojnowski, Nakajima)

Let $Q = \bullet$ be the Jordan quiver, and set f = 1. We've seen that $N_Q(1,d) \cong Hilb_d(\mathbb{A}^2)$. The $\mathbb{N} = \mathbb{N}^{Q_0}$ -graded vector space $\mathbb{M}_{Q,1}$ carries an action of an infinite-dimensional Heisenberg algebra heis_{∞}, and is an irreducible lowest weight module.

Given Q a quiver without loops we may define the Kac–Moody Lie algebra $\mathfrak{g}_Q \cong \mathfrak{n}_Q^- \oplus \mathfrak{h}_Q \oplus \mathfrak{n}_Q^+$. The positive part \mathfrak{n}_Q^+ is free Lie algebra generated by one (Chevalley) generator for each $i \in Q_0$, subject to the Serre relations.

Theorem (Nakajima)

Let Q be a quiver without loops. Then $\mathbb{M}_{Q,f}$ is a \mathfrak{g}_Q -module, and $\mathbb{M}_{Q,f}^{\mathrm{lowest}} := \bigoplus_{d \in \mathbb{N}^{Q_0}} H^{\mathrm{lowest}}(N_Q(f,d),\mathbb{Q})$ is an irreducible lowest weight module, with lowest weight dependent on f.

Deformations

- Let $N_Q^0(f,d)$ be the affinization of $N_Q(f,d)$. E.g. if Q is the Jordan quiver and f = 1 then $N_Q^0(f,d) = \text{Sym}^d(\mathbb{A}^2)$. In general the morphism $\pi: N_Q(f,d) \to N_Q^0(f,d)$ is a resolution of singularities.
- This morphism admits a "universal deformation":

$$\begin{array}{ccc} \mathsf{N}_Q(\mathsf{f},\mathsf{d}) & \longleftrightarrow & \tilde{\mathsf{N}}_Q(\mathsf{f},\mathsf{d}) \\ & & \downarrow^{\pi} & & \downarrow^{\tilde{\pi}} \\ \mathsf{N}_Q^0(\mathsf{f},\mathsf{d}) & \longleftrightarrow & \tilde{\mathsf{N}}_Q^0(\mathsf{f},\mathsf{d}) \\ & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ & & \{0\} & \longleftrightarrow & \mathbb{A}^{Q_0} \end{array}$$

• For generic $x \in \mathbb{A}^{Q_0}$ the morphism $\tilde{\pi}_x : \tilde{N}_Q(f, d)_x \to \tilde{N}_Q^0(f, d)_x$ obtained by base change along $\{x\} \hookrightarrow \mathbb{A}^{Q_0}$ is an isomorphism of affine varieties.

Torus action

Let f = f' + f'' be a decomposition of $f \in \mathbb{N}^{Q_0}$, with $f', f'' \in \mathbb{N}^{Q_0} \setminus \{0\}$. We let \mathbb{C}^* act on quiver varieties by scaling $r_{i,1}, \ldots, r_{i,f'_i}$ with weight ± 1 , $r_{i,1}^*, \ldots, r_{i,f'}^*$ with weight ∓ 1 , and leaving all other arrows invariant.

Proposition

There is an identification $N_Q(f,d)^{\mathbb{C}^*} = \prod_{d'+d''=d} N_Q(f',d') \times N_Q(f'',d'')$ given by taking direct sums.

- Define Att[±] \subset N_Q(f,d) to be the subset of ρ for which $\lim_{t\to 0} t \cdot \rho$ **⊤***₽': ^{Αω⁺}↓ exists.
- NB: the morphism $\lim_{t\to 0} (t \cdot -)$: Att[±] $\to N_O(f, d)^{\mathbb{C}^*}$ might not be continuous!!
- But the morphism $\lim_{t\to 0} (t \cdot -)$: Att $\overset{\pm}{} \to N_O(f, d)^{\mathbb{C}^*}$ is continuous, for generic $x \in \mathbb{A}^{Q_0}$.

Stable envelopes

• For generic x we consider the closed embedding(s)

$$\begin{aligned} \mathsf{Att}^{\pm}_{x} &\to \tilde{\mathsf{N}}_{Q}(\mathsf{f},\mathsf{d})^{\mathbb{C}^{*}}_{x} \times \tilde{\mathsf{N}}_{Q}(\mathsf{f},\mathsf{d})_{x} \\ \rho &\mapsto (\lim_{t \mapsto 0} t \cdot \rho, \rho) \end{aligned}$$

• Maulik and Okounkov define

$$\mathcal{L}^{\pm} = \lim_{x \mapsto 0} [Att_{x}^{\pm}] \in H_{\mathbb{C}^{*} \times \mathcal{T}}(N_{Q}(f,d)^{\mathbb{C}^{*}} \times N_{Q}(f,d),\mathbb{Q})$$
(\mathcal{T} is a choice of extra torus acting by scaling arrows of $\overline{Q_{f}}$)

• The two morphisms defined by these correspondences

$$\mathsf{Stab}^{\pm}\colon \, \mathsf{H}_{\mathbb{C}^{*}\times\mathcal{T}}(\mathsf{N}_{\mathcal{Q}}(\mathsf{f},\mathsf{d})^{\mathbb{C}^{*}},\mathbb{Q}) \to \mathsf{H}_{\mathbb{C}^{*}\times\mathcal{T}}(\mathsf{N}_{\mathcal{Q}}(\mathsf{f},\mathsf{d}),\mathbb{Q})$$

become invertible after tensoring with $Frac(H_{\mathbb{C}^*}) = \mathbb{Q}(a)$, where $H_{\mathbb{C}^*} = \mathbb{Q}[a]$ is the \mathbb{C}^* -equivariant cohomology of a point.

R-matrices

Definition

For $f', f'' \in \mathbb{N}^{Q_0}$ the *R*-matrix is defined as

 $R(a) = (\mathsf{Stab}^{-})^{-1} \circ \mathsf{Stab}^{+} \in \mathsf{End}_{\mathsf{H}_{\mathcal{T}}}(\mathbb{M}_{Q, \mathsf{f}'} \otimes_{\mathsf{H}_{\mathcal{T}}} \mathbb{M}_{Q, \mathsf{f}''}) \otimes \mathbb{Q}(a)$

Basic properties

• Expanding in powers of a^{-1}

$$R(a) = \mathrm{id} + \hbar a^{-1} \mathrm{r} + \hbar O(a^{-2})$$

where \hbar is the *T*-weight of the symplectic form on N_Q(f, d) and $r \in End_{H_{\mathcal{T}}}(\mathbb{M}_{Q,f'} \otimes_{H_{\mathcal{T}}} \mathbb{M}_{Q,f''})$ is the "classical r-matrix". So to get an interesting R-matrix we *must* pick nontrivial *T*.

• The R-matrix satisfies the Yang-Baxter equation $R_{12}(a_1)R_{13}(a_1 + a_2)R_{23}(a_2) = R_{23}(a_2)R_{13}(a_1 + a_2)R_{12}(a_1)$, the fundamental relation in integrable systems, responsible for producing e.g. knot invariants out of quantum groups. Yangians

• Given $g \in \operatorname{End}_{H_T}(\mathbb{M}_{Q,f'})[a]$, written as $\langle g_1 | \otimes | g_2 \rangle$ with $g_2 \in \mathbb{M}_{Q,f'}[a]$ and g_1 in the dual $\mathbb{M}_{Q,f'}^{\vee}$, we define

$$\pmb{E}_{\mathsf{f}''}(g) = \mathsf{Res}_{\textit{a}}((\langle g_1 | \otimes -) \circ R \circ (|g_2\rangle \otimes -)) \in \mathsf{End}(\mathbb{M}_{Q,\mathsf{f}''})$$

- MO define Y_Q ⊂ ⊕_{f''∈ℕQ0} End(M_{Q,f''}) to be the subalgebra generated by all E(g) := ⊕_{f''∈ℕQ0} E_{f''}(g).
- Similarly, they define $\mathfrak{g}_Q^{MO} \subset \bigoplus_{f'' \in \mathbb{N}^{Q_0}} \operatorname{End}(\mathbb{M}_{Q,f''})$ to be vector space generated by $\boldsymbol{E}(g)$ with g constant in a.

Theorem (Maulik–Okounkov)

- The \mathbb{Z}^{Q_0} -graded H_T -module $\mathfrak{g}_Q^{M_0}$ is closed under commutator.
- Each summand $\mathfrak{g}_{Q,d}^{MO}$ is free of finite rank.
- The morphism $Sym(\mathfrak{g}_Q^{MO}\otimes \mathbb{Q}[a]) \to \mathbf{Y}_Q$ is an isomorphism.

A representation theoretic hint

The morphism

$$\pi \colon \mathsf{N}_Q(\mathsf{f},\mathsf{d}) \to \mathsf{N}^0_Q(\mathsf{f},\mathsf{d})$$

is a projective morphism from a smooth variety. So the BBDG decomposition theorem applies, and we can write

$$\pi_* \mathbb{Q}_{\mathsf{N}_Q(\mathsf{f},\mathsf{d})}[d] = \mathsf{IC}_{\mathsf{N}_Q^0(\mathsf{f},\mathsf{d})} \oplus \ldots$$

as a direct sum of perverse sheaves ($d = \dim(N_Q(f, d))$). In particular. $H^*(N^0_Q(f, d)) \subset \mathbb{M}_{Q, f}$

- Lowering operators in \mathfrak{g}_Q^{MO} lift to morphisms of perverse sheaves $\pi_*\mathbb{Q}_{N_Q(f,d)}[d] \to \pi_*^{\mathbb{C}^*}\mathbb{Q}_{N_Q^{\mathbb{C}^*}(f,d)}[d^{\mathbb{C}^*}].$
- So $IH^*(N^0_Q(f,d)) \subset \mathbb{M}_{Q,f}$ is a space of lowest weight vectors for support reasons...

Okounkov's conjecture Definition-Theorem (Kac)

For any quiver Q and dimension vector $d \in \mathbb{N}^{Q_0}$ there is a polynomial $a_{Q,d}(t) \in \mathbb{Z}[t]$ (the *Kac polynomial*) such that if $q = p^n$ is a prime power,

 $\mathtt{a}_{Q,\mathsf{d}}(q) = \#\{ ^{\mathrm{absolutely indecomposable}}_{\mathtt{d}\text{-dimensional } \mathbb{F}_q Q \text{-modules}} \} / \sim^{\mathrm{iso}}$

Conjecture (Maulik–Okounkov)

 $\exists \text{ isomorphism of Lie algebras } \mathfrak{g}_Q^{M0,T} \cong \mathfrak{g}_Q'^{M0} \otimes \mathsf{H}_T \text{ for } \mathfrak{g}_Q'^{M0} \text{ defined over } \mathbb{Q}.$

Conjecture (Okounkov)

There is an equality
$$\mathtt{a}_{Q,\mathsf{d}}(t^{-1}) = \sum_{n \in \mathbb{Z}} \mathsf{dim}(\mathfrak{g}'^{\texttt{MO},n}_{Q,\mathsf{d}}) t^{n/2}.$$

- Maulik–Okounkov proved the conjectures when Q is the Jordan quiver.
- McBreen explicitly described the Yangian in the case Q an ADE Dynkin diagram, his results imply the conjecture for these quivers.

Ben Davison

Preprojective CoHA

- Define $\mathcal{A}_{\Pi_Q,d} \coloneqq \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}_d(\Pi_Q), \mathbb{Q})$ and $\mathcal{A}_{\Pi_Q} \coloneqq \bigoplus_{d \in \mathbb{N}^{Q_0}} \mathcal{A}_{\Pi_Q,d}$
- We consider the usual correspondence diagram $\mathfrak{M}(\Pi_Q) \times \mathfrak{M}(\Pi_Q) \xleftarrow{\pi_1 \times \pi_3} \mathfrak{Exact}(\Pi_Q) \xrightarrow{\pi_2} \mathfrak{M}(\Pi_Q)$ where π_n maps $(\rho_1 \to \rho_2 \to \rho_3) \mapsto \rho_n$.
- (Schiffmann–Vasserot, Yang–Zhao): pullback along $\pi_1 \times \pi_3$ and push forward along π_2 yields a morphism $\mathcal{A}_{\Pi_Q,d'} \otimes \mathcal{A}_{\Pi_Q,d''} \rightarrow \mathcal{A}_{\Pi_Q,d'+d''}$ making \mathcal{A}_{Π_Q} into a \mathbb{N}^{Q_0} -graded, cohomologically graded algebra.

Theorem (-, Meinhardt)

There is a Lie sub-algebra $\mathfrak{n}_{\Pi_Q}^+ \subset \mathcal{A}_{\Pi_Q}$ and a $H_{\mathbb{C}^*} = \mathbb{Q}[a]$ -action on \mathcal{A}_{Π_Q} such that $Sym(\mathfrak{n}_{\Pi_Q}^+ \otimes \mathbb{Q}[a]) \to \mathcal{A}_{\Pi_Q}$ is a PBW isomorphism.

Theorem (-)

There is an equality of characteristic functions $\chi_{t^{1/2}}(\mathfrak{n}_{\Pi_Q,d}^+) = \mathtt{a}_{Q,d}(t^{-1})$

Conjecture *: There is an isomorphism of Lie algebras $\mathfrak{n}_Q^{MO,+} \cong \mathfrak{n}_{\Pi_Q}^+ \otimes H_T$.

The decomposition theorem

- There is a canonical affinization map JH: $\mathfrak{M}(\Pi_Q) \to \mathcal{M}(\Pi_Q)$, where $\mathcal{M}(\Pi_Q)$ is the coarse moduli space; points of $\mathcal{M}(\Pi_Q)$ are in bijection with semisimple Π_Q -modules.
- One definition of H^{BM}(𝔐(Π_Q), ℚ) is as the derived global sections of the Verdier dual of the constant sheaf DQ_{𝔐(Π_Q)}.
- Factoring the structure morphism $\mathfrak{M}(\Pi_Q) \to pt$ through JH, we find $H^{BM}(\mathfrak{M}(\Pi_Q), \mathbb{Q}) \cong H(\mathcal{M}(\Pi_Q), JH_* \mathbb{DQ}_{\mathfrak{M}(\Pi_Q)})$

Theorem (Decomposition theorem (-))

$$\begin{array}{l} \mathrm{JH}_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}(\Pi_Q)}^{(\mathrm{vir})} \cong \bigoplus_{n \in 2 \cdot \mathbb{N}} {}^{\mathfrak{p}} \mathcal{H}^n (\mathrm{JH}_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}(\Pi_Q)}^{(\mathrm{vir})})[-n]. \ \text{Setting} \\ {}^{\mathfrak{p}} \mathcal{A}_{\Pi_Q}^0 = \mathrm{H}(\mathcal{M}(\Pi_Q), {}^{\mathfrak{p}} \mathcal{H}^0 (\mathrm{JH}_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}(\Pi_Q)}^{(\mathrm{vir})})) \subset \mathcal{A}_{\Pi_Q}, \ \text{we obtain the subalgebra} \\ {}^{\mathfrak{p}} \mathcal{A}_{\Pi_Q}^0 \cong \mathrm{U}(\mathfrak{n}_{\Pi_Q}^+) \end{array}$$

In (something like) English, the theorem tells us that the BPS Lie algebra can be lifted to an algebra object in the category of perverse sheaves on the coarse moduli space $\mathcal{M}(\Pi_Q)$.

Ben Davison

Structure theorem

Let Q be a quiver and pick $d \in \mathbb{N}^{Q_0}$ such that there exists a simple d-dimensional Π_Q -module. Then by the decomposition theorem there is a unique summand

 $\mathsf{IH}^*(\mathcal{M}_\mathsf{d}(\mathsf{\Pi}_Q)) \subset \mathfrak{n}^+_{\mathsf{\Pi}_Q,\mathsf{d}}$

which is *primitive* (for support reasons).

Theorem (-,Hennecart,Schlegel-Mejia)

Assume that Q has no isotropic roots, then $\mathfrak{n}_{\Pi_Q}^+$ is one half of a generalised Kac–Moody Lie algebra \mathfrak{g}_{Π_Q} , with Chevalley generators given by the above intersection cohomology groups.

(With isotropic roots the statement is just a little more complicated.)

Proposition

There is a natural isomorphism $\mathfrak{n}_{\Pi_{Q_f},(d,1)}^+ \cong H(N_Q(f,d),\mathbb{Q})$. Via the isomorphisms $\mathfrak{g}_{\Pi_Q,\bullet} \cong \mathfrak{g}_{\Pi_{Q_f},(\bullet,0)}$ we get a $\mathfrak{g}_{\Pi_Q,\bullet}$ -action on $\mathfrak{g}_{\Pi_{Q_f},(\bullet,1)} \cong \mathbb{M}_{Q,f}$.

The main theorem (with Tommaso Botta)

- For (x_i)_{i∈Q0} ∈ A^{Q0} we define the deformed stack 𝔐_d(Π_Q)_x in analogy with deformed Nakajima quiver varieties N_Q(f, d)_x.
- For generic x we have (almost) diagonal embedding $\Delta_x \colon N_Q(f,d)_x \hookrightarrow N_Q(f,d)_x \times \mathfrak{M}_{(d,1)}(\Pi_{Q_f})_x$
- We define the nonabelian stable envelope via the correspondence $\lim_{x\mapsto 0}[N_Q(f,d)_x] \in H(N_Q(f,d),\mathbb{Q})\otimes H^{BM}(\mathfrak{M}_{(d,1)}(\Pi_{Q_f},\mathbb{Q}))$

$$\Psi_f\colon \, \mathbb{M}_{\mathcal{Q},f} \to \bigoplus_{d\in \mathbb{N}^{\mathcal{Q}_0}} \mathcal{A}_{\Pi_{\mathcal{Q}_f},(d,1)}$$

(Defined also for T-equivariant versions).

Theorem (Botta,-)

- The morphism Ψ_f induces an isomorphism M_{Q,f} → n⁺_{Π_{Qf},(•,1)}, sending lowest weight vectors to Chevalley raising operators.
- Both \mathfrak{g}_Q^{M0} and \mathfrak{g}_{Π_Q} are realised as Lie subalgebras of $\bigoplus_{f\in\mathbb{N}^{Q_0}}\operatorname{End}(\mathfrak{n}_{\Pi_{Q_f},(\bullet,1)}^+)$, and are the same subalgebras $\Rightarrow *+MO+Okounkov$ conjectures hold.

Thank you!

That's it, thanks for listening!!