Okounkov's conjecture via BPS Lie algebras

Ben Davison
University of Edinburgh

Quivers and algebras

Path algebra

A quiver is a pair of（finite）sets Q_{1}, Q_{0} of arrows and vertices，respectively， and morphisms $s, t: Q_{1} \rightarrow Q_{0}$ ．For K a field，the path algebra $K Q$ is the K－algebra with basis given by paths in Q including paths \boldsymbol{e}_{i} of length zero at each $i \in Q_{0}$ ．Multiplication is given by concatenation of paths．
－The dimension vector of a $K Q$－module ρ is the tuple $\operatorname{dim}_{Q}(\rho):=\left(\boldsymbol{e}_{i} \cdot \rho\right)_{i \in Q_{0}} \in \mathbb{N}^{Q_{0}}$ ．
－The doubled quiver \bar{Q} is obtained by adding an arrow a^{*} for each $a \in Q_{1}$ and setting $s\left(a^{*}\right)=t(a)$ and $t\left(a^{*}\right)=s(a)$ ．
－The preprojective algebra Π_{Q} is the quotient $\mathbb{C} \bar{Q} /\left\langle\sum_{a \in Q_{1}}\left[a, a^{*}\right]\right\rangle$

Example

Consider the Jordan quiver：• $⿹ ⿺ ⿻ 一 丿 丶$ $\Pi_{Q}=\mathbb{C}\left\langle a, a^{*}\right\rangle /\left\langle\left[a, a^{*}\right]\right\rangle \cong \mathbb{C}\left[a, a^{*}\right]$ ．

Spaces of representations

- Fix a quiver Q and dimension vector $d \in \mathbb{N}^{Q_{0}}$. Set

$$
\operatorname{Rep}_{\mathrm{d}}(Q):=\prod_{a \in Q_{1}} \operatorname{Hom}\left(\mathbb{C}^{\mathrm{d}_{s(a)}}, \mathbb{C}^{\mathrm{d}_{t(a)}}\right)
$$

which is acted on by $\mathrm{GL}_{\mathrm{d}}:=\prod_{i \in Q_{0}} \mathrm{GL}_{\mathrm{d}_{i}}(\mathbb{C})$. Then $\left\{\mathrm{GL}_{\mathrm{d}}\right.$-orbits $\} \stackrel{1: 1}{\Leftrightarrow}\{$ d-dimensional $\mathbb{C} Q$-modules $\} / \sim$ iso

- $\operatorname{Rep}_{\mathrm{d}}(\bar{Q}) \cong \mathrm{T}^{*} \operatorname{Rep}_{\mathrm{d}}(Q)$ admits the (co)moment map $\mu_{Q, \mathrm{~d}}$ to $\mathfrak{g l}_{\mathrm{d}}:=\prod_{i \in Q_{0}} \operatorname{Mat}_{\mathrm{d}_{i} \times \mathrm{d}_{i}}(\mathbb{C}):$

$$
\operatorname{Rep}_{\mathrm{d}}(\bar{Q}) \ni \rho \mapsto \sum_{a \in Q_{1}}\left[\rho(a), \rho\left(a^{*}\right)\right] \in \mathfrak{g l}_{\mathrm{d}}
$$

- $\operatorname{Rep}_{\mathrm{d}}\left(\Pi_{Q}\right):=\mu_{Q, \mathrm{~d}}^{-1}(0) \subset \operatorname{Rep}_{\mathrm{d}}(\bar{Q})$ is the subspace of $\Pi_{Q \text {-modules. }}$.
- We could consider the stack $\mathfrak{M}_{d}\left(\Pi_{Q}\right)=\mu_{Q, d}^{-1}(0) / G L_{d}$. It is highly singular, and highly stacky. E.g. for Q the Jordan quiver $\operatorname{Rep}_{d}\left(\Pi_{Q}\right)$ is the stack of pairs of commuting $d \times d$-matrices, which at $\left(0_{d \times d}, 0_{d \times d}\right)$, is very singular, with stabilizer GL_{d}.

Nakajima quiver varieties

Framed quiver

Let $\mathrm{f} \in \mathbb{N}^{Q_{0}}$ be a "framing" dimension vector. We define Q_{f} by setting
$\left(Q_{f}\right)_{0}:=Q_{0} \coprod\{\infty\} ;$
$\left(Q_{f}\right)_{1}:=Q_{1} \coprod\left\{r_{i, m} \mid i \in Q_{0}, 1 \leq m \leq f_{i}\right\}$.
$s\left(r_{i, m}\right)=\infty$ and $t\left(r_{i, m}\right)=i$.

Definition

We define $N_{Q}(f, d):=\mu_{Q_{f},(d, 1)}^{-1}(0)^{s t} / G L_{d}$. The "st" means we only consider the stable locus: those $\Pi_{Q_{\mathrm{f}}}$ modules ρ that are generated by $\boldsymbol{e}_{\infty} \cdot \rho \cong \mathbb{C}$.

Key fact(s): $\mathrm{N}_{Q}(\mathrm{f}, \mathrm{d})$ is a smooth variety.

Example

Let Q be the Jordan quiver, set $f=1$. Then $\overline{Q_{f}}$ is the ADHM quiver, and $N_{Q}(f, d) \cong \operatorname{Hilb}_{d}\left(A^{2}\right)$.

Some geometric representation theory

Fix a quiver Q and $f \in \mathbb{N}^{Q_{0}}$. Set $\mathbb{M}_{Q, f}:=\bigoplus_{d \in \mathbb{N}_{0}} H\left(N_{Q}(f, d), \mathbb{Q}\right)$
Theorem (Grojnowski, Nakajima)
Let $Q=\bullet$ be the Jordan quiver, and set $f=1$. We've seen that $\mathrm{N}_{Q}(1, \mathrm{~d}) \cong \operatorname{Hilb}_{\mathrm{d}}\left(\mathbb{A}^{2}\right)$. The $\mathbb{N}=\mathbb{N}^{Q_{0}}$-graded vector space $\mathbb{M}_{Q, 1}$ carries an action of an infinite-dimensional Heisenberg algebra heis ∞_{∞}, and is an irreducible lowest weight module.

Given Q a quiver without loops we may define the Kac-Moody Lie algebra $\mathfrak{g}_{Q} \cong \mathfrak{n}_{Q}^{-} \oplus \mathfrak{h}_{Q} \oplus \mathfrak{n}_{Q}^{+}$. The positive part \mathfrak{n}_{Q}^{+}is free Lie algebra generated by one (Chevalley) generator for each $i \in Q_{0}$, subject to the Serre relations.

Theorem (Nakajima)

Let Q be a quiver without loops. Then $\mathbb{M}_{Q, f}$ is a \mathfrak{g}_{Q}-module, and $\mathbb{M}_{Q, f}^{\text {lowest }}:=\bigoplus_{\mathrm{d} \in \mathbb{N} Q_{0}} \mathrm{H}^{\text {lowest }}\left(\mathrm{N}_{Q}(\mathrm{f}, \mathrm{d}), \mathbb{Q}\right)$ is an irreducible lowest weight module, with lowest weight dependent on f .

Deformations

- Let $N_{Q}^{0}(f, d)$ be the affinization of $N_{Q}(f, d)$. E.g. if Q is the Jordan quiver and $f=1$ then $N_{Q}^{0}(f, d)=\operatorname{Sym}^{d}\left(\mathbb{A}^{2}\right)$. In general the morphism $\pi: \mathrm{N}_{Q}(\mathrm{f}, \mathrm{d}) \rightarrow \mathrm{N}_{Q}^{0}(\mathrm{f}, \mathrm{d})$ is a resolution of singularities.
- This morphism admits a "universal deformation":

- For generic $x \in \mathbb{A}^{Q_{0}}$ the morphism $\tilde{\pi}_{x}: \tilde{N}_{Q}(\mathrm{f}, \mathrm{d})_{x} \rightarrow \tilde{\mathrm{~N}}_{Q}^{0}(\mathrm{f}, \mathrm{d})_{x}$ obtained by base change along $\{x\} \hookrightarrow \mathbb{A}^{Q_{0}}$ is an isomorphism of affine varieties.

Torus action

Let $f=f^{\prime}+f^{\prime \prime}$ be a decomposition of $f \in \mathbb{N}^{Q_{0}}$, with $f^{\prime}, f^{\prime \prime} \in \mathbb{N}^{Q_{0}} \backslash\{0\}$. We let \mathbb{C}^{*} act on quiver varieties by scaling $r_{i, 1}, \ldots, r_{i, f_{i}^{\prime}}$ with weight ± 1, $r_{i, 1}^{*}, \ldots, r_{i, f_{i}^{\prime}}^{*}$ with weight ∓ 1, and leaving all other arrows invariant.

Proposition

There is an identification $N_{Q}(f, d)^{\mathbb{C}^{*}}=\coprod_{d^{\prime}+d^{\prime \prime}=d} N_{Q}\left(f^{\prime}, d^{\prime}\right) \times N_{Q}\left(f^{\prime \prime}, d^{\prime \prime}\right)$ given by taking direct sums.

- Define $\mathrm{Att}^{ \pm} \subset \mathrm{N}_{Q}(\mathrm{f}, \mathrm{d})$ to be the subset of ρ for which $\lim _{t \mapsto 0} t \cdot \rho$ exists.
- NB: the morphism
$\lim _{t \rightarrow 0}(t \cdot-): A t t^{ \pm} \rightarrow N_{Q}(f, d) \mathbb{C}^{*}$ might not be continuous!!
- But the morphism $\lim _{t \mapsto 0}(t \cdot-): \operatorname{Att}_{x}^{ \pm} \rightarrow \mathrm{N}_{Q}(\mathrm{f}, \mathrm{d})_{x}^{\mathbb{C}^{*}}$ is continuous, for generic $x \in \mathbb{A}^{Q_{0}}$.

Stable envelopes

- For generic x we consider the closed embedding(s)

$$
\begin{aligned}
\mathrm{Att}_{x}^{ \pm} & \rightarrow \tilde{\mathrm{N}}_{Q}(\mathrm{f}, \mathrm{~d})_{x}^{\mathbb{C}^{*}} \times \tilde{\mathrm{N}}_{Q}(\mathrm{f}, \mathrm{~d})_{x} \\
\rho & \mapsto\left(\lim _{t \rightarrow 0} t \cdot \rho, \rho\right)
\end{aligned}
$$

- Maulik and Okounkov define
$\mathcal{L}^{ \pm}=\lim _{x \mapsto 0}\left[A t t_{x}^{ \pm}\right] \in \mathrm{H}_{\mathbb{C}^{*} \times T}\left(\mathrm{~N}_{Q}(\mathrm{f}, \mathrm{d})^{\mathbb{C}^{*}} \times \mathrm{N}_{Q}(\mathrm{f}, \mathrm{d}), \mathbb{Q}\right)$
(T is a choice of extra torus acting by scaling arrows of $\overline{Q_{\mathrm{f}}}$)
- The two morphisms defined by these correspondences

$$
\operatorname{Stab}^{ \pm}: \mathrm{H}_{\mathbb{C}^{*} \times T}\left(\mathrm{~N}_{Q}(\mathrm{f}, \mathrm{~d})^{\mathbb{C}^{*}}, \mathbb{Q}\right) \rightarrow \mathrm{H}_{\mathbb{C}^{*} \times T}\left(\mathrm{~N}_{Q}(\mathrm{f}, \mathrm{~d}), \mathbb{Q}\right)
$$

become invertible after tensoring with $\operatorname{Frac}\left(\mathrm{H}_{\mathbb{C}^{*}}\right)=\mathbb{Q}(a)$, where $\mathrm{H}_{\mathbb{C}^{*}}=\mathbb{Q}[a]$ is the \mathbb{C}^{*}-equivariant cohomology of a point.

R-matrices

Definition

For $\mathrm{f}^{\prime}, \mathrm{f}^{\prime \prime} \in \mathbb{N}^{Q_{0}}$ the R-matrix is defined as

$$
R(a)=\left(\operatorname{Stab}^{-}\right)^{-1} \circ \operatorname{Stab}^{+} \in \operatorname{End}_{H_{T}}\left(\mathbb{M}_{Q, \mathrm{f}^{\prime}} \otimes_{\mathrm{H}_{T}} \mathbb{M}_{Q, \mathrm{f}^{\prime \prime}}\right) \otimes \mathbb{Q}(a)
$$

Basic properties

- Expanding in powers of a^{-1}

$$
R(a)=\mathrm{id}+\hbar a^{-1} r+\hbar O\left(a^{-2}\right)
$$

where \hbar is the T-weight of the symplectic form on $N_{Q}(f, d)$ and $r \in \operatorname{End}_{H_{T}}\left(M_{Q, f^{\prime}} \otimes_{H_{T}} M_{Q, f^{\prime \prime}}\right)$ is the "classical r-matrix". So to get an interesting R -matrix we must pick nontrivial T.

- The R-matrix satisfies the Yang-Baxter equation $R_{12}\left(a_{1}\right) R_{13}\left(a_{1}+a_{2}\right) R_{23}\left(a_{2}\right)=R_{23}\left(a_{2}\right) R_{13}\left(a_{1}+a_{2}\right) R_{12}\left(a_{1}\right)$, the fundamental relation in integrable systems, responsible for producing e.g. knot invariants out of quantum groups.

Yangians

- Given $g \in \operatorname{End}_{H_{T}}\left(\mathbb{M}_{Q, f^{\prime}}\right)[a]$, written as $\left\langle g_{1}\right| \otimes\left|g_{2}\right\rangle$ with $g_{2} \in \mathbb{M}_{Q, f^{\prime}}[a]$ and g_{1} in the dual $\mathbb{M}_{Q, f^{\prime}}^{\vee}$, we define

$$
E_{f^{\prime \prime}}(g)=\operatorname{Res}_{a}\left(\left(\left\langle g_{1}\right| \otimes-\right) \circ R \circ\left(\left|g_{2}\right\rangle \otimes-\right)\right) \in \operatorname{End}\left(\mathbb{M}_{Q, \mathrm{f}^{\prime \prime}}\right)
$$

- MO define $\boldsymbol{Y}_{Q} \subset \bigoplus_{f^{\prime \prime} \in \mathbb{N}^{Q_{0}}} \operatorname{End}\left(\mathbb{M}_{Q, f^{\prime \prime}}\right)$ to be the subalgebra generated by all $\boldsymbol{E}(g):=\bigoplus_{f^{\prime \prime} \in \mathbb{N}^{Q_{0}}} \boldsymbol{E}_{f^{\prime \prime}}(g)$.
- Similarly, they define $\mathfrak{g}_{Q}^{\mathrm{MO}} \subset \bigoplus_{\mathrm{f}^{\prime \prime} \in \mathbb{N} Q_{0}} \operatorname{End}\left(\mathbb{M}_{Q, \mathrm{f}^{\prime \prime}}\right)$ to be vector space generated by $\boldsymbol{E}(g)$ with g constant in a.

Theorem (Maulik-Okounkov)

- The $\mathbb{Z}^{Q_{0}}$-graded H_{T}-module $\mathfrak{g}_{Q}^{\mathrm{MO}}$ is closed under commutator.
- Each summand $\mathfrak{g}_{Q, \mathrm{~d}}^{\mathrm{MO}}$ is free of finite rank.
- The morphism $\operatorname{Sym}\left(\mathfrak{g}_{Q}^{\mathrm{MD}} \otimes \mathbb{Q}[a]\right) \rightarrow \boldsymbol{Y}_{Q}$ is an isomorphism.

A representation theoretic hint

- The morphism

$$
\pi: \mathrm{N}_{Q}(\mathrm{f}, \mathrm{~d}) \rightarrow \mathrm{N}_{Q}^{0}(\mathrm{f}, \mathrm{~d})
$$

is a projective morphism from a smooth variety. So the BBDG decomposition theorem applies, and we can write

$$
\pi_{*} \mathbb{Q}_{\mathrm{N}_{Q}(\mathrm{f}, \mathrm{~d})}[d]=\mathrm{IC}_{\mathrm{N}_{Q}^{0}(\mathrm{f}, \mathrm{~d})} \oplus \ldots
$$

as a direct sum of perverse sheaves $\left(d=\operatorname{dim}\left(N_{Q}(f, d)\right)\right.$. In particular. $\mathrm{IH}^{*}\left(\mathrm{~N}_{Q}^{0}(\mathrm{f}, \mathrm{d})\right) \subset \mathrm{M}_{Q, f}$

- Lowering operators in $\mathfrak{g}_{Q}^{\mathrm{MO}}$ lift to morphisms of perverse sheaves $\pi_{*} \mathbb{Q}_{N_{Q}(f, d)}[d] \rightarrow \pi_{*}^{\mathbb{C}^{*}} \mathbb{Q}_{\mathbb{N}_{Q}^{®^{*}}(f, d)}\left[d^{\mathbb{C}^{*}}\right]$.
- So $\mathrm{IH}^{*}\left(\mathrm{~N}_{Q}^{0}(\mathrm{f}, \mathrm{d})\right) \subset \mathrm{M}_{Q, \mathrm{f}}$ is a space of lowest weight vectors for support reasons...

Okounkov's conjecture

Definition-Theorem (Kac)

For any quiver Q and dimension vector $d \in \mathbb{N}^{Q_{0}}$ there is a polynomial $\mathrm{a}_{Q, \mathrm{~d}}(t) \in \mathbb{Z}[t]$ (the Kac polynomial) such that if $q=p^{n}$ is a prime power,

$$
\mathrm{a}_{Q, \mathrm{~d}}(q)=\#\left\{\begin{array}{l}
\text { absolutely indecomposable } \\
\mathrm{d} \text {-dimensional } \mathbb{F}_{q} Q \text {-modules }
\end{array}\right\} / \sim^{\text {iso }}
$$

Conjecture (Maulik-Okounkov)

\exists isomorphism of Lie algebras $\mathfrak{g}_{Q}^{\text {MO, } T} \cong \mathfrak{g}_{Q}^{\prime \text { MO }} \otimes \mathrm{H}_{T}$ for $\mathfrak{g}_{Q}^{\prime \text { MO }}$ defined over \mathbb{Q}.

Conjecture (Okounkov)

There is an equality $\mathrm{a}_{Q, \mathrm{~d}}\left(t^{-1}\right)=\sum_{n \in \mathbb{Z}} \operatorname{dim}\left(\mathfrak{g}_{Q, \mathrm{~d}}^{\prime \mathrm{M}, \mathrm{n}}\right) t^{n / 2}$.

- Maulik-Okounkov proved the conjectures when Q is the Jordan quiver.
- McBreen explicitly described the Yangian in the case Q an ADE Dynkin diagram, his results imply the conjecture for these quivers.

Preprojective CoHA

- Define $\mathcal{A}_{\Pi_{Q}, \mathrm{~d}}:=\mathrm{H}^{\mathrm{BM}}\left(\mathfrak{M}_{\mathrm{d}}\left(\Pi_{Q}\right), \mathbb{Q}\right)$ and $\mathcal{A}_{\Pi_{Q}}:=\bigoplus_{\mathrm{d} \in \mathbb{N}^{Q}} \mathcal{A}_{\Pi_{Q}, \mathrm{~d}}$
- We consider the usual correspondence diagram
 $\left(\rho_{1} \rightarrow \rho_{2} \rightarrow \rho_{3}\right) \mapsto \rho_{n}$.
- (Schiffmann-Vasserot, Yang-Zhao): pullback along $\pi_{1} \times \pi_{3}$ and push forward along π_{2} yields a morphism $\mathcal{A}_{\Pi_{Q}, \mathrm{~d}^{\prime}} \otimes \mathcal{A}_{\Pi_{Q, \mathrm{~d}^{\prime \prime}}} \rightarrow \mathcal{A}_{\Pi_{Q}, \mathrm{~d}^{\prime}+\mathrm{d}^{\prime \prime}}$ making $\mathcal{A}_{\Pi_{Q}}$ into a $\mathbb{N}^{Q_{0}}$-graded, cohomologically graded algebra.

Theorem (-, Meinhardt)

There is a Lie sub-algebra $\mathfrak{n}_{\Pi_{Q}}^{+} \subset \mathcal{A}_{\Pi_{Q}}$ and a $\mathrm{H}_{\mathbb{C}^{*}}=\mathbb{Q}[a]$-action on $\mathcal{A}_{\Pi_{Q}}$ such that $\operatorname{Sym}\left(\mathfrak{n}_{\Pi_{Q}}^{+} \otimes \mathbb{Q}[a]\right) \rightarrow \mathcal{A}_{\Pi_{Q}}$ is a PBW isomorphism.

Theorem (-)
There is an equality of characteristic functions $\chi_{t^{1 / 2}}\left(\mathfrak{n}_{\Pi_{Q, \mathrm{~d}}}^{+}\right)=\mathrm{a}_{Q, \mathrm{~d}}\left(t^{-1}\right)$
Conjecture *: There is an isomorphism of Lie algebras $\mathfrak{n}_{Q}^{\mathrm{MO},+} \cong \mathfrak{n}_{\Pi_{Q}}^{+} \otimes \mathrm{H}_{T}$.

The decomposition theorem

- There is a canonical affinization map $\mathrm{JH}: \mathfrak{M}\left(\Pi_{Q}\right) \rightarrow \mathcal{M}\left(\Pi_{Q}\right)$, where $\mathcal{M}\left(\Pi_{Q}\right)$ is the coarse moduli space; points of $\mathcal{M}\left(\Pi_{Q}\right)$ are in bijection with semisimple Π_{Q}-modules.
- One definition of $\mathrm{H}^{\mathrm{BM}}\left(\mathfrak{M}\left(\Pi_{Q}\right), \mathbb{Q}\right)$ is as the derived global sections of the Verdier dual of the constant sheaf $\mathbb{D} \mathbb{Q}_{\mathfrak{M}\left(\Pi_{Q}\right)}$.
- Factoring the structure morphism $\mathfrak{M}\left(\Pi_{Q}\right) \rightarrow$ pt through JH, we find $H^{B M}\left(\mathfrak{M}\left(\Pi_{Q}\right), \mathbb{Q}\right) \cong \mathrm{H}\left(\mathcal{M}\left(\Pi_{Q}\right), \mathrm{JH}_{*} \mathbb{D} \mathbb{Q}_{\mathfrak{M}\left(\Pi_{Q}\right)}\right)$

Theorem (Decomposition theorem (-))

$\mathrm{JH}_{*} \mathbb{D} Q_{\mathfrak{M}\left(\Pi_{Q}\right)}^{(\mathrm{vir})} \cong \bigoplus_{n \in 2 \cdot \mathrm{~N}^{\mathfrak{p}}} \mathcal{H}^{n}\left(\mathrm{JH}_{*} \mathbb{D} Q_{\mathfrak{M}\left(\Pi_{Q}\right)}^{(\mathrm{vir})}\right)[-n]$. Setting
${ }^{\mathfrak{p}} \mathcal{A}_{\Pi_{Q}}^{0}=\mathrm{H}\left(\mathcal{M}\left(\Pi_{Q}\right),{ }^{\mathfrak{p}} \mathcal{H}^{0}\left(\mathrm{JH}_{*} \mathbb{D} Q_{\mathfrak{M}\left(\Pi_{Q}\right)}^{(\mathrm{vir})}\right)\right) \subset \mathcal{A}_{\Pi_{Q}}$, we obtain the subalgebra ${ }^{\mathfrak{p}} \mathcal{A}_{\Pi_{Q}}^{0} \cong \mathrm{U}\left(\mathfrak{n}_{\Pi_{Q}}^{+}\right)$

In (something like) English, the theorem tells us that the BPS Lie algebra can be lifted to an algebra object in the category of perverse sheaves on the coarse moduli space $\mathcal{M}\left(\Pi_{Q}\right)$.

Structure theorem

Let Q be a quiver and pick $d \in \mathbb{N}^{Q_{0}}$ such that there exists a simple d-dimensional Π_{Q}-module. Then by the decomposition theorem there is a unique summand

$$
\mathrm{H}^{*}\left(\mathcal{M}_{\mathrm{d}}\left(\Pi_{Q}\right)\right) \subset \mathfrak{n}_{\Pi_{Q}, \mathrm{~d}}^{+}
$$

which is primitive (for support reasons).

Theorem (-,Hennecart,Schlegel-Mejia)

Assume that Q has no isotropic roots, then $\mathfrak{n}_{\Pi_{Q}}^{+}$is one half of a generalised Kac-Moody Lie algebra $\mathfrak{g}_{\square_{Q}}$, with Chevalley generators given by the above intersection cohomology groups.
(With isotropic roots the statement is just a little more complicated.)

Proposition

There is a natural isomorphism $\mathfrak{n}_{\Pi_{Q_{f}},(d, 1)}^{+} \cong H\left(N_{Q}(f, d), \mathbb{Q}\right)$. Via the isomorphisms $\mathfrak{g}_{\Pi_{Q}, \bullet} \cong \mathfrak{g}_{Q_{\mathrm{f}},(\bullet, 0)}$ we get a $\mathfrak{g}_{\Pi_{Q}, \bullet}$-action on $\mathfrak{g}_{\Pi_{\mathfrak{f}},(\bullet, 1)} \cong \mathbb{M}_{Q, f}$.

The main theorem (with Tommaso Botta)

- For $\left(x_{i}\right)_{i \in Q_{0}} \in \mathbb{A}^{Q_{0}}$ we define the deformed stack $\mathfrak{M}_{\mathrm{d}}\left(\Pi_{Q}\right)_{x}$ in analogy with deformed Nakajima quiver varieties $\mathrm{N}_{Q}(\mathrm{f}, \mathrm{d})_{x}$.
- For generic x we have (almost) diagonal embedding $\Delta_{x}: N_{Q}(\mathrm{f}, \mathrm{d})_{x} \hookrightarrow \mathrm{~N}_{Q}(\mathrm{f}, \mathrm{d})_{x} \times \mathfrak{M}_{(\mathrm{d}, 1)}\left(\Pi_{Q_{\mathrm{f}}}\right)_{x}$
- We define the nonabelian stable envelope via the correspondence $\lim _{x \mapsto 0}\left[N_{Q}(f, d)_{x}\right] \in H\left(N_{Q}(f, d), \mathbb{Q}\right) \otimes H^{B M}\left(\mathfrak{M}_{(\mathrm{d}, 1)}\left(\Pi_{Q_{f}}, \mathbb{Q}\right)\right.$

$$
\Psi_{f}: \mathbb{M}_{Q, f} \rightarrow \bigoplus_{d \in \mathbb{N}^{Q_{0}}} \mathcal{A}_{\Pi_{Q_{f}},(\mathrm{~d}, 1)}
$$

(Defined also for T-equivariant versions).

Theorem (Botta,-)

- The morphism Ψ_{f} induces an isomorphism $\mathbb{M}_{Q, \mathrm{f}} \rightarrow \mathfrak{n}_{\Pi_{Q_{\mathrm{f}}}(\bullet, 1)}$, sending lowest weight vectors to Chevalley raising operators.
- Both $\mathfrak{g}_{Q}^{\mathrm{MO}}$ and $\mathfrak{g}_{\Pi_{Q}}$ are realised as Lie subalgebras of $\bigoplus_{f \in \mathbb{N}_{0}} \operatorname{End}\left(\mathfrak{n}_{\Pi_{Q_{f}}(\bullet, 1)}^{+}\right)$, and are the same subalgebras \Rightarrow * $+\mathrm{MO}+$ Okounkov conjectures hold.

Thank you!

That's it, thanks for listening!!

