Namikawa-Weyl groups of quiver varieties

Jasper van de Kreeke

University of Amsterdam

1 February 2024

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

This talk is based on my 2018 master's thesis, supervised by Raf Bocklandt and Eric Opdam.

We almost solved the problem of Namikawa-Weyl groups for quiver varieties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

However some technical problems were left. Get in touch!

Goals

Quest 1: Why quiver varieties?

- Representation theory
- Hands-on definition
- Kleinian singularities
- Quest 2: What are Namikawa-Weyl groups?
 - Classical Weyl-groups
 - Symplectic singularities
 - Poisson deformations
 - Namikawa-Weyl groups

Quest 3: Namikawa-Weyl groups of quiver varieties?

- Basic construction
- Remaining problems

• Given algebra $A = \mathbb{C}Q/I$

Capture its representations in a moduli space

$$\mathcal{M} \coloneqq \operatorname{\mathsf{Rep}}(A) / \sim .$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sometimes \mathcal{M} can be defined as algebraic variety
- In that case, it is typically singular
- \blacktriangleright \rightarrow Interesting for deformation people!

Quiver varieties: from CY2 categories

- Given cyclic A_{∞} -category C of degree 2
- Assume X_1, \ldots, X_k are generators
- Assume $\operatorname{Ext}^*(X_i, X_j) \cong \underbrace{\mathbb{C} \operatorname{id}}_{\operatorname{deg 0}} \oplus \underbrace{V_{ij} \oplus V_{ji}^*}_{\operatorname{deg 1}} \oplus \underbrace{\mathbb{C} \operatorname{id}^*}_{\operatorname{deg 2}}$

• Then
$$\mu^{\geq 3} = 0$$
 on the generators

• But
$$\mu^2(a, a^*) = \operatorname{id}^* \operatorname{etc}$$

• Thus C is (almost) derived equivalent to Rep(Π), where

$$\Pi = rac{\mathbb{C}\overline{Q}}{\left(\sum_{a\in Q_1}aa^* - a^*a
ight)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Interesting algebra! What are its reps?

Construction of GIT quotient:

▶ Let X affine variety with action of reductive group G

$$X \not|\!| G := \operatorname{Spec}(\mathbb{C}[X]^G).$$

 Fact: The points of X ∥ G are → closed G-orbits
 Example:

 \mathbb{C}^* act on \mathbb{C} by multiplication, $\mathbb{C}[X]^{\mathbb{C}^*} = \mathbb{C}$, $\text{Spec}(\mathbb{C}) = \text{pt.}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Construction of quiver varieties (I)

- Start with quiver Q, dimension vector $\alpha \in \mathbb{N}^{Q_0}$
- Take double quiver \overline{Q} of Q
- ► Representation space $\operatorname{Rep}(\overline{Q}, \alpha) := \bigoplus_{a \in Q_1} \mathbb{C}^{\alpha_{h(a)}, \alpha_{t(a)}} \oplus \bigoplus_{a \in Q_1} \mathbb{C}^{\alpha_{t(a)}, \alpha_{h(a)}}.$
- The group $GL_{\alpha} := \prod_{v \in Q_0} GL_{\alpha_v}$ acts on $Rep(\overline{Q}, \alpha)$ by "conjugation":

$$(g.
ho)(a) = g_{h(a)}
ho(a)g_{t(a)}^{-1} \in \mathbb{C}^{\alpha_{h(a)},\alpha_{t(a)}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Construction of quiver varieties (II)

▶ Define subspace $\operatorname{Rep}(\Pi_Q, \alpha) \subseteq \operatorname{Rep}(\overline{Q}, \alpha)$ as those ρ with

$$\sum_{h(a)=\nu}\rho(a)\rho(a^*)-\sum_{t(a)=\nu}\rho(a^*)\rho(a)=0.$$

Define quiver variety as

$$\mathcal{M}(Q, \alpha) \coloneqq \mathsf{Rep}(\Pi_Q, \alpha) /\!\!/ \mathsf{GL}_{\alpha}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quiver varieties are well-defined and have symplectic structure:

- GL_{α} -action restricts to $Rep(\Pi_Q, \alpha)$
- ▶ GL_{α} -orbits $\stackrel{1:1}{\longleftrightarrow}$ representations of the preprojective algebra

$$\Pi_{\boldsymbol{Q}} \coloneqq \frac{\mathbb{C}\overline{\boldsymbol{Q}}}{\left(\sum_{\boldsymbol{a}\in\boldsymbol{Q}_1}(\boldsymbol{a}\boldsymbol{a}^*-\boldsymbol{a}^*\boldsymbol{a})\right)}$$

- Π_Q is Calabi-Yau of dimension 2
- ▶ Points of $\mathcal{M}(Q, \alpha)$ are $\stackrel{1:1}{\longleftrightarrow}$ semisimple representations of Π_Q
- $\operatorname{Rep}(\overline{Q}, \alpha)$ is a symplectic vector space with

$$\omega(
ho,\sigma)\coloneqq \sum_{oldsymbol{a}\in Q_1} \mathrm{tr}(\sigma(oldsymbol{a})
ho(oldsymbol{a}^*)-\sigma(oldsymbol{a}^*)
ho(oldsymbol{a})).$$

M(Q, α)^{reg} inherits symplectic structure
 M(Q, α) has a C*-action given by scaling

Example: extended Dynkin quiver setting A_3

Invariant ring

$$\mathbb{C}[\operatorname{Rep}(\Pi_Q, \alpha)] = \frac{\mathbb{C}[A, A^*, B, B^*, C, C^*, D, D^*]}{AA^* = BB^* = CC^* = DD^*},$$
$$\mathbb{C}[\operatorname{Rep}(\Pi_Q, \alpha)]^{\operatorname{GL}_{\alpha}} = \mathbb{C}[AA^*, ABCD, A^*B^*C^*D^*]$$
$$\cong \mathbb{C}[U, V, W]/(U^4 - VW).$$

These are the Kleinian singularities!

$$A_n : xy - z^{n+1} = 0, \qquad D_n : x^2 + y^2 z + z^{n-1} = 0,$$

$$E_6 : x^2 + y^3 + z^4 = 0, \qquad E_7 : x^2 + y^3 + yz^3 = 0,$$

$$E_8 : x^2 + y^3 + z^5.$$

Some heuristics on Kleinian singularities:

- Let K be A_n , D_n or $E_{6/7/8}$ Kleinian singularity
- There is a symplectic resolution $\pi: \tilde{K} \to K$
- The special fiber $\pi^{-1}(0)$ consists of *n* intersecting \mathbb{P}^1 's

The higher-dimensional variety C^{2m} × K has symplectic resolution C^{2m} × K̃

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Classical ADE Weyl groups:

- Given one ADE type $(A_n, D_n, E_{6/7/8})$
- Cartan pairing (-,-) on \mathbb{C}^{Q_0}
- Reflections $s_i : \mathbb{C}^{Q_0} \to \mathbb{C}^{Q_0}$ given by

$$s_i(v) = v - (v, e_i)e_i.$$

Weyl group W := ⟨s_i⟩_{i∈Q0} ⊆ GL(ℂ^{Q0})
 Example A₂:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why symplectic singularities?

Singularities in dimension 1 are easy:

(日) (四) (日) (日) (日)

▶ We instead want singularities in dimension ≥ 2!

A symplectic singularity is:

- Complex algebraic variety X
- Complex symplectic form ω on X^{reg}

such that:

- ω is holomorphic
- ▶ ∃ resolution of singularities $\pi: Y \to X$ such that $\pi^* \omega$ extends to a smooth 2-form on *Y*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

e.g. quiver varieties, symplectic quotients, coadjoint orbits, ...

- Deformations of algebras, varieties, schemes, . . .
- Over algebraic rings, local rings, over base schemes, ...
- Formal deformation theory = Functors of Artin rings
- ▶ Natural question: What is a "deformation of (X, ω) "?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to define deformations of (X, ω) :

- Let (X, ω) affine symplectic singularity
- ▶ Poisson bracket {−,−} on C[X] determined by (X, ω)
- Standard symplectic manifold $(X, \omega) = (\mathbb{C}^{2d}, \omega_{std})$

$$\{f,g\} = \sum_{i=1}^{d} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i}$$

- ▶ This turns ℂ[X] into a Poisson algebra:
- Poisson algebra = commutative algebra + bracket (satisfying Jacobi and Leibniz rule)
- Deformation of (X, ω) := deformation of $(\mathbb{C}[X], \{-, -\})$

Yoshinori Namikawa investigated the Poisson deformation theory of (X, ω) and found that:

- Assume X is affine symplectic singularity
- ► Assume X has a good C[×]-action
- Assume $\pi: Y \to X$ is a symplectic resolution
- ▶ Then \exists universal Poisson deformations \mathcal{X}, \mathcal{Y}
- (They are Poisson schemes)

with the following properties:

- Dimension $d = \dim \operatorname{HP}^2(X, \omega)$
- The map $\pi : \mathbb{C}^d \to \mathbb{C}^d$ is a Galois covering (ramified at 0)
- Simply speaking, π is a quotient map $\mathbb{C}^d \to \mathbb{C}^d/W$
- $W = {\sf Gal}(\pi)$ is called the Namikawa-Weyl group

How to compute the Namikawa-Weyl group?

- (X, ω) decomposes into even-dimensional symplectic leaves
- The codimension-0 leaf is simply X^{reg}
- ▶ Around every codimension-2 leaf, X looks like $\mathbb{C}^{\dim X-2} \times K$
- Pick a symplectic resolution $\pi: Y \to X$

▶ Is the associated Dynkin automorphism D trivial or not?
 ▶ Namikawa-Weyl group is W_X = ∏_{leaves S} (W_S)^D

Trivial example:

- Let (X, ω) be a Kleinian singularity
- Symplectic resolution $\pi: \tilde{X} \to X$
- There is only one codimension-2 leaf and it's a point
- Conclusion: Namikawa-Weyl group = classical Weyl group

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let's look at the case $X = \mathcal{M}(Q, \alpha)$. Bellamy and Schedler identified the codimension 2 strata:

Given an isotropic decomposition with affine Dynkin quiver Q'', let Q''_f be the finite part, which is a Dynkin diagram.

Theorem 1.20. Let $\alpha \in \Sigma_{\lambda,\theta}$ be imaginary. Then the codimension two strata of $\mathfrak{M}_{\lambda}(\alpha,\theta)$ are in bijection with the isotropic decompositions of α . The singularity along each such stratum is étale-equivalent to the du Val singularity of the type A_n, D_n, E_n corresponding to Q''_f .

As a consequence, for $\lambda = 0 = \theta$, by [45, Theorem 1.1] the Namikawa Weyl group is a product over all isotropic decompositions B of a group W_B . This group W_B is either the Weyl group of the corresponding Dynkin diagram Q''_f , or else the centralizer therein of an automorphism of this diagram, corresponding to the monodromy around the fiber over a point of the stratum under a crepant resolution of the complement of the codimension > 2 strata.

Let α = n₁β₁ + ... + n_kβ_k be an isotropic decomposition
 Then the leaf is {S₁^{⊕n₁} ⊕ ... ⊕ S_k^{⊕n_k} | S_i ∈ Rep(Π, β_i) simple}

• Example: Quiver setting (Q, α) with isotropic decomposition $\alpha = e_1 + e_2 + e_2 + e_3$

 $\begin{pmatrix} \lambda^* & 0 \\ 0 & \mu^* \end{pmatrix}$

0

0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2

0

This element x sits on a codimension 2 leaf

 $x = S_1 \oplus S_2 \oplus S_3 \oplus S_4 =$

• Local description at $x \in \mathcal{M}(Q, \alpha)$:

$$(\mathcal{M}(Q,\alpha),x)\cong (\mathcal{M}(Q',\alpha'),0).$$

Can analyze the singularities this way!

ln the example, the local quiver Q' is:

• The local description is: $\mathbb{C}^4 \times \text{Kleinian } A_3$ singularity.

Definition of Mumford quotient:

- Let X affine variety with action of reductive group G
- Let $\theta : G \to \mathbb{C}^*$ a character
- Define $n\theta: G \to \mathbb{C}^*$ by $(n\theta)(g) = \theta(g)^n$
- A regular function $f: X \to \mathbb{C}$ is a $n\theta$ -semiinvariant if

$$f(gx) = (n\theta)(g) \cdot f(x).$$

Define

$$\mathsf{SI} \coloneqq \bigoplus_{n \in \mathbb{N}} \mathsf{SI}_{n\theta}, \quad X \not\parallel_{\theta} G \coloneqq \mathsf{Proj}(\mathsf{SI}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

▶ Have inclusion $\mathbb{C}[X]^G \subseteq$ SI, inducing a map $X \#_{\theta} G \to X \# G$

A resolution of $\mathcal{M}(Q, \alpha)$ can sometimes be constructed as follows:

- Take a stability parameter $\theta \in \mathbb{Z}^{Q_0}$
- Gives a character of GL_{α} by $\theta(g) \coloneqq \prod_{i \in Q_0} \det(g_i)^{\theta_i}$.
- Define $\mathcal{M}_{\theta}(Q, \alpha)$ as Mumford quotient
- ▶ Its points are the orbits of θ -polystable representations
- Have semisimplification map:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This map is often a symplectic resolution

- In the example, picking $\theta = (-1, -1, +3)$ works
- Some representations which lie over the leaf:

Now let's show the monodromy is nontrivial!

- Start at some point $(\lambda, \lambda^*, \mu, \mu^*)$ in the leaf
- ▶ Pick a lift in the left-most \mathbb{P}^1 , i.e. of type

(日) (日) (日) (日) (日) (日) (日) (日)

 \blacktriangleright We end up in the right-most \mathbb{P}^1

Conclusion: Automorphism of this leaf is nontrivial!

Great! How to do this for other (Q, α) ? There are several issues:

- Explicit representations in the fiber are hard to find
- Which θ to choose to make the fiber as simple as possible?
- For some (Q, α) , not a single $\mathcal{M}_{\theta}(Q, \alpha)$ is a resolution
- Does it suffice to find a "local resolution" around every leaf?
- How to construct such a "local resolution" with easy fibers?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

An approach to build a "synthetic resolution" which always exists:

- 1. Let L be a codimension 2 leaf
- 2. Let $x \in L$ be a point $x = S_1 \oplus \ldots \oplus S_k$
- 3. $M_x :=$ closed orbits which semisimplify to x and are of shape

4. Define $\pi: \cup M_x \to L$ as semisimplification

5. Make it into algebraic or analytic variety

Thanks for coming!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Appendix: Symplectic quotients

Recall GIT quotient:

▶ If X affine variety and G acts on X, then

$$X \not|\!| G := \operatorname{Spec}(\mathbb{C}[X]^G).$$

Example: V symplectic vector space, $G \leq Sp(V)$ finite, then

 $V \not\parallel G$ is sometimes a symplectic singularity.

• Example: $G \leq SL(2, \mathbb{C})$ finite group, then

 $\mathbb{C}^2 /\!\!/ G$ is a Kleinian singularity.

Appendix: Symplectic quotients

For instance, we can obtain the Kleinian A_1 singularity as follows:

• Let
$$G = C_2 = \{1, s\}$$
 act on $V = \mathbb{C}^2$ by

$$1.(x,y) = (x,y), \quad s.(x,y) = (-x,-y).$$

On polynomials this translates to

$$1.f = f$$
, $s.f = f(-X, -Y)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Thus C[V]^G = C[X², Y², XY] ≅ C[U, V, W]/(UV - W²).
 This is the A₁ singularity!

Appendix: Symplectic quotients

Bellamy's result on their Namikawa-Weyl groups:

- Let Γ ≤ G fix a precisely (dim(V) − 2)-dimensional vector space
- Then {points fixed by Γ } $\subseteq V$ is a codimension-2 leaf
- ▶ In fact, Γ is a Kleinian group, and locally $V \ / \ G \cong \mathbb{C}^2 / \Gamma$
- The normalizer $N_G(\Gamma)$ acts on Irr(G) by conjugation
- Theorem (Bellamy): This is the Dynkin automorphism associated to the leaf

Thanks for coming!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで