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This talk is based on my 2018 master’s thesis,
supervised by Raf Bocklandt and Eric Opdam.

We almost solved the problem of Namikawa-Weyl
groups for quiver varieties.

However some technical problems were left.
Get in touch!



Goals

Quest 1: Why quiver varieties?
I Representation theory
I Hands-on definition
I Kleinian singularities

Quest 2: What are Namikawa-Weyl groups?
I Classical Weyl-groups
I Symplectic singularities
I Poisson deformations
I Namikawa-Weyl groups

Quest 3: Namikawa-Weyl groups of quiver varieties?
I Basic construction
I Remaining problems



Quest 1: Why quiver varieties?

I Given algebra A = CQ/I
I Capture its representations in a moduli space

M := Rep(A)/ ∼ .

I Sometimes M can be defined as algebraic variety
I In that case, it is typically singular
I → Interesting for deformation people!



Quest 1: Why quiver varieties?

Quiver varieties: from CY2 categories
I Given cyclic A∞-category C of degree 2
I Assume X1, . . . ,Xk are generators
I Assume Ext∗(Xi ,Xj) ∼= C id︸︷︷︸

deg 0

⊕ Vij ⊕ V ∗
ji︸ ︷︷ ︸

deg 1

⊕C id∗︸ ︷︷ ︸
deg 2

I Then µ≥3 = 0 on the generators
I But µ2(a, a∗) = id∗ etc
I Thus C is (almost) derived equivalent to Rep(Π), where

Π =
CQ(∑

a∈Q1
aa∗ − a∗a

)
I → Interesting algebra! What are its reps?



Quest 1: Why quiver varieties?

Construction of GIT quotient:
I Let X affine variety with action of reductive group G
I Define

X � G := Spec(C[X ]G).

I Fact: The points of X � G are 1:1←→ closed G-orbits
I Example:

C∗ act on C by multiplication, C[X ]C
∗
= C, Spec(C) = pt.



Quest 1: Why quiver varieties?

Construction of quiver varieties (I)
I Start with quiver Q, dimension vector α ∈ NQ0

I Take double quiver Q of Q
I Representation space

Rep(Q, α) := ⊕a∈Q1C
αh(a),αt(a) ⊕⊕a∈Q1C

αt(a),αh(a) .
I The group GLα :=

∏
v∈Q0

GLαv acts on Rep(Q, α) by
“conjugation”:

(g .ρ)(a) = gh(a)ρ(a)g−1
t(a) ∈ Cαh(a),αt(a) .



Quest 1: Why quiver varieties?

Construction of quiver varieties (II)
I Define subspace Rep(ΠQ , α) ⊆ Rep(Q, α) as those ρ with∑

h(a)=v
ρ(a)ρ(a∗)−

∑
t(a)=v

ρ(a∗)ρ(a) = 0.

I Define quiver variety as

M(Q, α) := Rep(ΠQ , α) � GLα .



Quest 1: Why quiver varieties?
Quiver varieties are well-defined and have symplectic structure:
I GLα-action restricts to Rep(ΠQ , α)

I GLα-orbits 1:1←→ representations of the preprojective algebra

ΠQ :=
CQ(∑

a∈Q1
(aa∗ − a∗a)

) .
I ΠQ is Calabi-Yau of dimension 2
I Points of M(Q, α) are 1:1←→ semisimple representations of ΠQ
I Rep(Q, α) is a symplectic vector space with

ω(ρ, σ) :=
∑
a∈Q1

tr(σ(a)ρ(a∗)− σ(a∗)ρ(a)).

I M(Q, α)reg inherits symplectic structure
I M(Q, α) has a C∗-action given by scaling



Quest 1: Why quiver varieties?
Example: extended Dynkin quiver setting A3

(Q, α) =

1 1 1

1

(Q, α) =

1 1 1

1

I Invariant ring

C[Rep(ΠQ , α)] =
C[A,A∗,B,B∗,C ,C∗,D,D∗]

AA∗ = BB∗ = CC∗ = DD∗ ,

C[Rep(ΠQ , α)]
GLα = C[AA∗,ABCD,A∗B∗C∗D∗]

∼= C[U,V ,W ]/(U4 − VW ).

I These are the Kleinian singularities!
An : xy − zn+1 = 0, Dn : x2 + y2z + zn−1 = 0,
E6 : x2 + y3 + z4 = 0, E7 : x2 + y3 + yz3 = 0,
E8 : x2 + y3 + z5.



Quest 1: Why quiver varieties?

Some heuristics on Kleinian singularities:
I Let K be An, Dn or E6/7/8 Kleinian singularity
I There is a symplectic resolution π : K̃ → K
I The special fiber π−1(0) consists of n intersecting P1’s

special fiber

π

singularity

I The higher-dimensional variety C2m × K has symplectic
resolution C2m × K̃



Quest 2: What are Namikawa-Weyl groups?



Quest 2: What are Namikawa-Weyl groups?
Classical ADE Weyl groups:
I Given one ADE type (An, Dn, E6/7/8)
I Cartan pairing (−,−) on CQ0

I Reflections si : CQ0 → CQ0 given by

si(v) = v − (v , ei)ei .

I Weyl group W := 〈si〉i∈Q0 ⊆ GL(CQ0)
I Example A2:

Q = (−,−) =
(

2 −1
−1 2

)

s1 =

(
−1 1
0 1

)
, s2 =

(
1 0
1 −1

)

W ∼= S3 = {1, (12), (13), (23), (123), (132)}.



Quest 2: What are Namikawa-Weyl groups?

Why symplectic singularities?
I Singularities in dimension 1 are easy:

Double point

Node

I We instead want singularities in dimension ≥ 2!



Quest 2: What are Namikawa-Weyl groups?

A symplectic singularity is:
I Complex algebraic variety X
I Complex symplectic form ω on X reg

such that:
I ω is holomorphic
I ∃ resolution of singularities π : Y → X such that π∗ω extends

to a smooth 2-form on Y
e.g. quiver varieties, symplectic quotients, coadjoint orbits, . . .



Quest 2: What are Namikawa-Weyl groups?

I Deformations of algebras, varieties, schemes, . . .
I Over algebraic rings, local rings, over base schemes, . . .
I Formal deformation theory = Functors of Artin rings
I Natural question: What is a “deformation of (X , ω)”?



Quest 2: What are Namikawa-Weyl groups?

How to define deformations of (X , ω):
I Let (X , ω) affine symplectic singularity
I Poisson bracket {−,−} on C[X ] determined by (X , ω)

I Standard symplectic manifold (X , ω) = (C2d , ωstd)

{f , g} =
d∑

i=1

∂f
∂pi

∂g
∂qi
− ∂f

∂qi

∂g
∂pi

.

I This turns C[X ] into a Poisson algebra:
I Poisson algebra = commutative algebra + bracket

(satisfying Jacobi and Leibniz rule)
I Deformation of (X , ω) := deformation of (C[X ], {−,−})



Quest 2: What are Namikawa-Weyl groups?
Yoshinori Namikawa investigated the Poisson deformation theory
of (X , ω) and found that:
I Assume X is affine symplectic singularity
I Assume X has a good C×-action
I Assume π : Y → X is a symplectic resolution
I Then ∃ universal Poisson deformations X ,Y
I (They are Poisson schemes)

X Y

Cd Cd

with the following properties:
I Dimension d = dimHP2(X , ω)
I The map π : Cd → Cd is a Galois covering (ramified at 0)
I Simply speaking, π is a quotient map Cd → Cd/W
I W = Gal(π) is called the Namikawa-Weyl group



Quest 2: What are Namikawa-Weyl groups?

How to compute the Namikawa-Weyl group?
I (X , ω) decomposes into even-dimensional symplectic leaves
I The codimension-0 leaf is simply X reg

I Around every codimension-2 leaf, X looks like CdimX−2 × K
I Pick a symplectic resolution π : Y → X

symplectic leaf

π

symplectic leaf

Symplectic resolution Singular variety (X, ω)

I Is the associated Dynkin automorphism D trivial or not?
I Namikawa-Weyl group is WX =

∏
leaves S

(WS)
D



Quest 2: What are Namikawa-Weyl groups?

Trivial example:
I Let (X , ω) be a Kleinian singularity
I Symplectic resolution π : X̃ → X
I There is only one codimension-2 leaf and it’s a point
I Conclusion: Namikawa-Weyl group = classical Weyl group



Quest 3: Namikawa-Weyl groups of quiver
varieties?



Quest 3: Namikawa-Weyl groups of quiver varieties?

Let’s look at the case X =M(Q, α). Bellamy and Schedler
identified the codimension 2 strata:

I Let α = n1β1 + . . .+ nkβk be an isotropic decomposition
I Then the leaf is {S⊕n1

1 ⊕ . . .⊕ S⊕nk
k | Si ∈ Rep(Π, βi) simple}



Quest 3: Namikawa-Weyl groups of quiver varieties?

I Example: Quiver setting (Q, α) with isotropic decomposition
α = e1 + e2 + e2 + e3

x = S1 ⊕ S2 ⊕ S3 ⊕ S4 =

1

2 1

00
0

0

(
λ 0
0 µ

)
(
λ∗ 0
0 µ∗

)

I This element x sits on a codimension 2 leaf



Quest 3: Namikawa-Weyl groups of quiver varieties?
I Local description at x ∈M(Q, α):

(M(Q, α), x) ∼= (M(Q ′, α′), 0).

I Can analyze the singularities this way!
I In the example, the local quiver Q ′ is:

1

1

1

1

these loops each give a C1 factor

I The local description is: C4 × Kleinian A3 singularity.



Quest 3: Namikawa-Weyl groups of quiver varieties?

Definition of Mumford quotient:
I Let X affine variety with action of reductive group G
I Let θ : G → C∗ a character
I Define nθ : G → C∗ by (nθ)(g) = θ(g)n

I A regular function f : X → C is a nθ-semiinvariant if

f (gx) = (nθ)(g) · f (x).

I Define
SI :=

⊕
n∈N

SInθ, X �θ G := Proj(SI).

I Have inclusion C[X ]G ⊆ SI, inducing a map X �θ G → X � G



Quest 3: Namikawa-Weyl groups of quiver varieties?
A resolution ofM(Q, α) can sometimes be constructed as follows:
I Take a stability parameter θ ∈ ZQ0

I Gives a character of GLα by θ(g) :=
∏

i∈Q0
det(gi)

θi .
I Define Mθ(Q, α) as Mumford quotient
I Its points are the orbits of θ-polystable representations
I Have semisimplification map:

S3

S2

S4

S1
semisimplify

S1 ⊕ S2 ⊕ S3 ⊕ S4

Mθ(Q, α) M(Q, α)

∈ ∈

I This map is often a symplectic resolution



Quest 3: Namikawa-Weyl groups of quiver varieties?
I In the example, picking θ = (−1,−1,+3) works
I Some representations which lie over the leaf:

A3 Dynkin diagram

1

2 1(1
0

)(0 λ − µ∗)
(∗ 1)

0

(
λ 1
0 µ

)
(
λ∗ 0
0 µ∗

)

1

2 1(0
1

)(λ − µ∗ 0)
(∗ 1)

0

(
λ 0
1 µ

)
(
λ∗ 0
0 µ∗

)



Quest 3: Namikawa-Weyl groups of quiver varieties?

Now let’s show the monodromy is nontrivial!
I Start at some point (λ, λ∗, µ, µ∗) in the leaf
I Pick a lift in the left-most P1, i.e. of type

S3

S2

S4

S1

S3

S2

S4

S1

gradually go to (µ, µ∗, λ, λ∗)

I We end up in the right-most P1

I Conclusion: Automorphism of this leaf is nontrivial!



Quest 3: Namikawa-Weyl groups of quiver varieties?

Great! How to do this for other (Q, α)? There are several issues:
I Explicit representations in the fiber are hard to find
I Which θ to choose to make the fiber as simple as possible?
I For some (Q, α), not a single Mθ(Q, α) is a resolution
I Does it suffice to find a “local resolution” around every leaf?
I How to construct such a “local resolution” with easy fibers?



Quest 3: Namikawa-Weyl groups of quiver varieties?

An approach to build a “synthetic resolution” which always exists:
1. Let L be a codimension 2 leaf
2. Let x ∈ L be a point x = S1 ⊕ . . .⊕ Sk

3. Mx := closed orbits which semisimplify to x and are of shape

S3

S2

S4

S1

S3

S2

S4

S1

S3

S2

S4

S1

4. Define π : ∪Mx → L as semisimplification
5. Make it into algebraic or analytic variety



Thanks for coming!



Appendix: Symplectic quotients

Recall GIT quotient:
I If X affine variety and G acts on X , then

X � G := Spec(C[X ]G).

I Example: V symplectic vector space, G ≤ Sp(V ) finite, then

V � G is sometimes a symplectic singularity.

I Example: G ≤ SL(2,C) finite group, then

C2 � G is a Kleinian singularity.



Appendix: Symplectic quotients

For instance, we can obtain the Kleinian A1 singularity as follows:
I Let G = C2 = {1, s} act on V = C2 by

1.(x , y) = (x , y), s.(x , y) = (−x ,−y).

I On polynomials this translates to

1.f = f , s.f = f (−X ,−Y ).

I Thus C[V ]G = C[X2,Y 2,XY ] ∼= C[U,V ,W ]/(UV −W 2).
I This is the A1 singularity!



Appendix: Symplectic quotients

Bellamy’s result on their Namikawa-Weyl groups:
I Let Γ ≤ G fix a precisely (dim(V )− 2)-dimensional vector

space
I Then {points fixed by Γ} ⊆ V is a codimension-2 leaf
I In fact, Γ is a Kleinian group, and locally V � G ∼= C2/Γ

I The normalizer NG(Γ) acts on Irr(G) by conjugation
I Theorem (Bellamy): This is the Dynkin automorphism

associated to the leaf



Thanks for coming!


