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This talk is based on my 2018 master'’s thesis,
supervised by Raf Bocklandt and Eric Opdam.

We almost solved the problem of Namikawa-Weyl
groups for quiver varieties.

However some technical problems were left.
Get in touch!



Goals

Quest 1: Why quiver varieties?
P> Representation theory
» Hands-on definition
» Kleinian singularities
Quest 2: What are Namikawa-Weyl groups?
» Classical Weyl-groups
» Symplectic singularities
» Poisson deformations
» Namikawa-Weyl groups
Quest 3: Namikawa-Weyl groups of quiver varieties?
» Basic construction

» Remaining problems



Quest 1: Why quiver varieties?

v

Given algebra A= CQ//

» Capture its representations in a moduli space
M = Rep(A)/ ~.

» Sometimes M can be defined as algebraic variety
P In that case, it is typically singular

> — Interesting for deformation people!



Quest 1: Why quiver varieties?

Quiver varieties: from CY2 categories
» Given cyclic Ay-category C of degree 2

> Assume Xi,..., Xk are generators
> Assume Ext*(Xj, Xj) = g/i_d/@ Vio VioCid
deg O degv 1 deg 2

» Then ;=3 = 0 on the generators
> But p?(a,a*) = id* etc
Thus C is (almost) derived equivalent to Rep([1), where

v

CcQ
(Pacq 22" — a%a)

» — Interesting algebra! What are its reps?

M=




Quest 1: Why quiver varieties?

Construction of GIT quotient:
» Let X affine variety with action of reductive group G
» Define
X // G = Spec(C[X]®).
» Fact: The points of X // G are &L closed G-orbits
> Example:

C* act on C by multiplication, C[X]® =C, Spec(C) = pt.



Quest 1: Why quiver varieties?

Construction of quiver varieties (1)
» Start with quiver Q, dimension vector oz € N
» Take double quiver Q of Q
> Representation space
Rep(Q, @) i= ©aeq CH ™) & Bae g CHelo o).

> The group GLo = [],¢q, GLa, acts on Rep(@, a) by
“conjugation”:

(8:9)(2) = gn(a)P(2)gy ) € CH ).



Quest 1: Why quiver varieties?

Construction of quiver varieties (I1)

» Define subspace Rep(Mg,a) C Rep(Q, ) as those p with

S p@e(a) — Y pla)p(a) =0,

h(a)=v t(a)=v
» Define quiver variety as

M(Q,«) = Rep(Mg,a) J GL, .



Quest 1: Why quiver varieties?

Quiver varieties are well-defined and have symplectic structure:

» GL,-action restricts to Rep(Mg, a)

> GL,-orbits LN representations of the preprojective algebra
cQ

(Xoequ(aa — a%a))

Mg is Calabi-Yau of dimension 2

I'IQ =

v

Points of M(Q, «) are LN semisimple representations of [1g

vy

Rep(@, ) is a symplectic vector space with
w(p, o)=Y tr(o(a)p(a*) — o(a*)p(a)).
ac@

> M(Q, )8 inherits symplectic structure
» M(Q,«) has a C*-action given by scaling



Quest 1: Why quiver varieties?
Example: extended Dynkin quiver setting As

= 1)
(@)= (Q.0) = ’\
A Darowo
» Invariant ring
C[Rep(ana)] — C[AaA*, B,B*,C,C* D, D*]

AA* = BB* = CC* = DD* ’
C[Rep(Mg, a)]®t> = C[AA*, ABCD, A*B* C* D*|
>~ C[U, V, W]/(U* — vW).
P These are the Kleinian singularities!
A, xy—z"t =0, D,: x> +y?z+z""1 =0,
E6:x2+y3+z4:0, E7:x2+y3+yz3:0,
Es: x*+y3+ 25



Quest 1: Why quiver varieties?

Some heuristics on Kleinian singularities:
> Let K be Ap, Dy or Eg/7/8 Kleinian singularity
» There is a symplectic resolution 7 : K — K

» The special fiber 771(0) consists of n intersecting P!'s

special fiber singularity

2o X

» The higher-dimensional variety C>™ x K has symplectic
resolution C?™ x K



Quest 2: What are Namikawa-Weyl groups?



Quest 2: What are Namikawa-Weyl groups?
Classical ADE Weyl groups:
> Given one ADE type (A,, Dy, Eg/7/8)
> Cartan pairing (—, —) on C®
> Reflections s; : C% — C given by
S,'(V) =V - (V7 e,-)e,-.
> Weyl group W = (s;);cq, C GL(C®)
> Example A;:

0= oo (-

s<1>3/< )

W=Ss

12

(123), (132)}.



Quest 2: What are Namikawa-Weyl groups?

Why symplectic singularities?

» Singularities in dimension 1 are easy:

Double point

Node

P> We instead want singularities in dimension > 2!



Quest 2: What are Namikawa-Weyl groups?

A symplectic singularity is:
» Complex algebraic variety X
> Complex symplectic form w on X8

such that:

» w is holomorphic
» d resolution of singularities 7 : Y — X such that 7*w extends

to a smooth 2-form on Y
e.g. quiver varieties, symplectic quotients, coadjoint orbits, ...



Quest 2: What are Namikawa-Weyl groups?

» Deformations of algebras, varieties, schemes, ...
» Over algebraic rings, local rings, over base schemes, ...
» Formal deformation theory = Functors of Artin rings

» Natural question: What is a “deformation of (X,w)"?



Quest 2: What are Namikawa-Weyl groups?

How to define deformations of (X, w):
» Let (X, w) affine symplectic singularity
» Poisson bracket {—, —} on C[X] determined by (X, w)
» Standard symplectic manifold (X,w) = (C?9, wq)

of 0g  Of Og
tf.e} = Zapl dq;  0q; Op;’

v

This turns C[X] into a Poisson algebra:

v

Poisson algebra = commutative algebra + bracket
(satisfying Jacobi and Leibniz rule)

» Deformation of (X,w) := deformation of (C[X],{—,—})



Quest 2: What are Namikawa-Weyl groups?

Yoshinori Namikawa investigated the Poisson deformation theory
of (X,w) and found that:

Assume X is affine symplectic singularity
Assume X has a good C*-action

| 2
>
> Assume 7 : Y — X is a symplectic resolution
» Then 3 universal Poisson deformations X', )
>

(They are Poisson schemes)

X — )

L
c! —— C?
with the following properties:
» Dimension d = dim HP?(X, w)
» The map 7 : C¢ — C9 is a Galois covering (ramified at 0)
» Simply speaking, 7 is a quotient map C¢ — C9/W
» W = Gal(r) is called the Namikawa-Weyl group



Quest 2: What are Namikawa-Weyl groups?

How to compute the Namikawa-Weyl group?
» (X,w) decomposes into even-dimensional symplectic leaves
» The codimension-0 leaf is simply X"
» Around every codimension-2 leaf, X looks like C4imX=2 » K
>

Pick a symplectic resolution 7 : Y — X

symplectic leaf symplectlc leaf
g X
Symplectic resolution Singular variety (X, w)

v

Is the associated Dynkin automorphism D trivial or not?
Namikawa-Weyl group is Wx = [] (Ws)P

leaves S

v



Quest 2: What are Namikawa-Weyl groups?

Trivial example:
» Let (X,w) be a Kleinian singularity
» Symplectic resolution 7 : X=X
» There is only one codimension-2 leaf and it's a point

» Conclusion: Namikawa-Weyl group = classical Weyl group



Quest 3: Namikawa-Weyl groups of quiver
varieties?



Quest 3: Namikawa-Weyl groups of quiver varieties?

Let's look at the case X = M(Q, ). Bellamy and Schedler
identified the codimension 2 strata:

Given an isotropic decomposition with affine Dynkin quiver Q”, let Q;{ be the finite part, which

is a Dynkin diagram.

Theorem 1.20. Let o € Xy be imaginary. Then the codimension two strata of My(c, @) are
in bijection with the isotropic decompositions of «. The singularity along each such stratum is
étale-equivalent to the du Val singularity of the type Ay, Dy, E,, corresponding to Q;

As a consequence, for A = 0 = 0, by [45, Theorem 1.1] the Namikawa Weyl group is a product
over all isotropic decompositions B of a group Wp. This group Wp is either the Weyl group of
the corresponding Dynkin diagram Q;{, or else the centralizer therein of an automorphism of this
diagram, corresponding to the monodromy around the fiber over a point of the stratum under a

crepant resolution of the complement of the codimension > 2 strata.

» Let a = mpB1+ ...+ ne Bk be an isotropic decomposition
> Then the leaf is {SP™ @ ... ® SP™ | S; € Rep(M, B;) simple}



Quest 3: Namikawa-Weyl groups of quiver varieties?

» Example: Quiver setting (Q, o) with isotropic decomposition
a=e +tet+ete

A* 0
0 u*

Xx=5185®S5d S5 =

» This element x sits on a codimension 2 leaf



Quest 3: Namikawa-Weyl groups of quiver varieties?
» Local description at x € M(Q, a):

(M(Q, ), x) =2 (M(Q,d),0).

» Can analyze the singularities this way!
» In the example, the local quiver Q' is:

QNP
1 1)
7 u,t o

» The local description is: C* x Kleinian A3 singularity.



Quest 3: Namikawa-Weyl groups of quiver varieties?

Definition of Mumford quotient:
> Let X affine variety with action of reductive group G
> Let #: G — C* a character
» Define nf : G — C* by (nf)(g) = 0(g)"
» A regular function f : X — C is a nf-semiinvariant if

f(gx) = (nb)(g) - f(x).

» Define
Sl:i=@PSle. X [o G:=Proj(Sl).

neN

» Have inclusion C[X]® C SI, inducingamap X /o G — X /J G



Quest 3: Namikawa-Weyl groups of quiver varieties?

A resolution of M(Q, «) can sometimes be constructed as follows:
> Take a stability parameter 6 € Z%
> Gives a character of GL, by 0(g) == [[;cq, det(g,)%.
» Define My(Q, ) as Mumford quotient
> Its points are the orbits of #-polystable representations
>

Have semisimplification map:

M@(an) M(Q,Oé)
w w
S4
;1 r\
‘ . semisimplify
S14------ S, — S19S@ES3® S,
r. ht
S3

» This map is often a symplectic resolution



Quest 3: Namikawa-Weyl groups of quiver varieties?
» In the example, picking 8 = (-1, —1,+3) works

» Some representations which lie over the leaf:

As Dynkin diagram
[




Quest 3: Namikawa-Weyl groups of quiver varieties?

Now let's show the monodromy is nontrivial!
» Start at some point (A, A*, u, ©*) in the leaf
» Pick a lift in the left-most P!, i.e. of type

Sa x * Sa
P gradually go to (u, u*, A\, \*) ha
S514------ S S5 ------ ¥ S
r. h r. t
53 53

» We end up in the right-most P!

» Conclusion: Automorphism of this leaf is nontrivial!



Quest 3: Namikawa-Weyl groups of quiver varieties?

Great! How to do this for other (Q,«)? There are several issues:
» Explicit representations in the fiber are hard to find
» Which 0 to choose to make the fiber as simple as possible?
» For some (Q, «), not a single My(Q, «) is a resolution
» Does it suffice to find a “local resolution” around every leaf?
>

How to construct such a “local resolution” with easy fibers?



Quest 3: Namikawa-Weyl groups of quiver varieties?

An approach to build a “synthetic resolution” which always exists:

1.
2.
3.

Let L be a codimension 2 leaf
Let x e Lbeapointx=5®...8 S5
M, := closed orbits which semisimplify to x and are of shape

S4 S4 S,
A . A LS N .

7’ N 7’ N 7’ N
S14------ S5 S1------ » S S ------ ¥ S
r\ R , /1 \—J , I.‘ r\ R , /‘-‘

S3 S3 S3

4. Define 7w : UMy — L as semisimplification

Make it into algebraic or analytic variety



Thanks for coming!



Appendix: Symplectic quotients

Recall GIT quotient:
> If X affine variety and G acts on X, then

X // G == Spec(C[X]®).
» Example: V symplectic vector space, G < Sp(V) finite, then
V /| G is sometimes a symplectic singularity.
» Example: G < SL(2,C) finite group, then

C? // G is a Kleinian singularity.



Appendix: Symplectic quotients

For instance, we can obtain the Kleinian A; singularity as follows:
» Let G= G = {1,s} act on V = C? by

1-(XaY):(X7}/)7 s‘(va):(_Xa_y)'
» On polynomials this translates to
1l.f=f, sf=fFf(-X,-Y).

» Thus C[V]® = C[X?, Y2, XY] = C[U, V, W]/(UV — W?).
» This is the A; singularity!



Appendix: Symplectic quotients

Bellamy's result on their Namikawa-Weyl groups:
» Let I < G fix a precisely (dim(V) — 2)-dimensional vector
space
» Then {points fixed by '} C V is a codimension-2 leaf
» In fact, I is a Kleinian group, and locally V J G = C?/T
» The normalizer Ng(I') acts on Irr(G) by conjugation

» Theorem (Bellamy): This is the Dynkin automorphism
associated to the leaf



Thanks for coming!



