On J-representation $t y p e s$
with examples from
the representation theory of valued quirers
Calvin Ppeifer, SDU
05 Octoben 2023
FD Seminan
[P'23]: ar-Xir:2308.09576 b arxiv:2308.09587

Setting
K: algebraically closed field of characteristic 0 .
$A=K Q / I$ basic finite-dimensional associative and qunital K-algebra. quiver admissible ideal
$\bmod (A):=$ category of finitt-dimensional Left A-modules.
pros $(A):=$ full subcategory of projective A-modules.
TSA: Auslander-Reiten translation for A.
$K_{0}(A):=K_{0}(\bmod A)=\mathbb{Z} Q_{0}$ Grothendicek group of $\bmod (A)$.
$K_{0}(A)^{t}=\mathbb{N} Q_{0}$ submonoid of dimension vectors $\operatorname{dim}(V) \operatorname{for} V \in \bmod (A)$.

$$
K_{0}(p \operatorname{poj} A)_{\mathbb{R}}:=K_{0}(p \operatorname{voj} A) \not \mathbb{Z N}_{\mathbb{Z}} \mathbb{R} \quad K_{0}(A)_{\mathbb{R}}^{*}:=\operatorname{lom}_{\mathbb{Z}}\left(K_{0}(A), \mathbb{R}\right)
$$

Euler paining: $\langle,,\rangle_{A}: K_{0}\left(q^{\sim 0 j} A\right) \times K_{0}(A) \rightarrow \mathbb{Z},\left\langle P_{1} V\right\rangle:=\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(P_{1}, V\right)$.

万-tilting theory
De $S:[A I R](V, P) \subset \bmod (A) \times \operatorname{pooj}_{j}(A)$
is 3 -rigid is $* \operatorname{Hom}_{A}(P, V)=0$

* $\operatorname{Hom}_{A}\left(V, J_{A} V\right)=0$

Stability
Def: [King] $\theta \in K_{0}(A)_{R}^{*} . V \in \bmod (A)$
is θ-semistable if $* \Theta(V)=0$

* $\theta(u) \leqslant 0 \forall 0 \neq u \notin V$.
it is θ-stable is strict imquality holds.

Inter play of 5-bilding theory and stability: DIJ, BST, Assai, AI, ...
representation finite
finitely many indecomposable modules in $\bmod (A)$
J-tilting_finite \Longrightarrow stability finite
finitely many indecomposable
J-rigid modules in $\bmod (A)$. modules in $\bmod (A)$.
IT[DIJ]

finitely many cones in
the g-vector fou $\operatorname{Fan}(A) \leq K_{0}(\text { prog } A)_{R}$
$W(V):=\{\Theta \mid V i s \theta$ - senistable \}
[DIT]\| $\|_{0} \longrightarrow$ Demonet's conjecture:
vationally-g-complete

$$
K_{0}\left(p v_{0} j A\right)_{z} \leq \operatorname{Fan}(A)
$$

Suppose A is s-tilling infinite.
Then, there exists $y \in K_{0}\left(p \sim_{j} A\right)$ such that $y \notin \operatorname{Tan}(A)$.

Bramer-Thuall I
Thmi[Aoitu] Suppose A is representation infinite.
For cueny $d \geqslant 0$ exists an indecomparable
$V \in \bmod (A)$ with $\operatorname{dim}_{k}(V) \geqslant d$.
T-vigil BTI
Prop Suppose A is 5 -tilting infinite.
For every $d \geqslant 0$ exists an indecomposable g-vigid $V \in \bmod (A)$ with $\operatorname{dim}_{k}(V) \geqslant d$.
If: Let $d \in K_{0}(A)^{+}$.
$\operatorname{Rep}(A, d):=$ af Sine variety of representations
G

$$
\begin{aligned}
& G ん(K, d):=\prod_{i \in Q_{0}} G L\left(K, d_{i}\right) \\
& V \in R_{e p}(A, d) \| G G(V):=G L(K, d) . V
\end{aligned}
$$

$$
V_{\text {s-vigid }} \stackrel{V_{\text {dist }}}{\Longrightarrow} G(V) \leq \operatorname{Rep}(A, d) \text { open }
$$

$$
\Longrightarrow \overline{G(V)} \leq \operatorname{Rep}(A, d) \text { irreducible component. }
$$

$\overleftrightarrow{\exists<\infty}$ 5-rigid modules with dimension vector d.
Notation: $\operatorname{VVr}(A):=\bigcup_{\operatorname{dek}_{0}(A)^{*}}\{Z \mid Z$ is an irreducible component of $\operatorname{Rep}(A, d)\}$

Braver -Thrall II
The: [B] Suppose A is representation infinite.
There exist $d \in K_{0}(A)^{+}$and ∞-many inge comparable
$V \in \bmod (A)$ with $\operatorname{dim}(V)=d$.

Def: $[G L S$ '12] $Z \in \operatorname{lnr}(A)$ is 5 -reduced if
generic number $C_{A}(Z)=\operatorname{hom}_{A}^{3}(Z):=\min _{r i} \operatorname{dim}_{K} H \operatorname{Hom}_{A}\left(V_{1} J_{A} V\right)$
Bk: "s" holds by a Lemma of Voigt
$V \quad\left\{\begin{array}{l}\{1: 1 \\ I \\ V_{1: 1}\end{array}\right.$

The: [King] Let $\theta \in K_{0}(A)^{*}, d \in K_{0}(A)$.
There exists a quasi-puojective variety $\operatorname{Mod}(A, d, \theta)^{s t}$
parametvizing isomorphism classes of θ-stable A-modules $V \in \operatorname{Rep}(A, d)$.
$\overline{O(V)} \quad\left\{Z_{\in} \operatorname{lur}(A) 5\right.$-reduced with $\left.C_{\lambda}(Z)=0\right\}$.

5-veduced BT II
Conj: Suppose A is 5 -tilting infinite.
There exist $d \in K_{0}(A)^{+}$and $Z \in \operatorname{lor}(A)$ such that Z is s-reduced with $C_{A}(Z) \geqslant 1$.
Remarks on the history:

- BTI\&II < 1950 first published in [Jan]
- brick BT II first introduced in [M,2] stated with this name in [STV].
- Conj: [llb] Dance cubit puoputy \Rightarrow or-billing finite.
stable BT II
Conj: Suppose A is 9 -tilting in finite.
There exist $d \in K_{0}(A)^{+}$and $\theta \in K_{0}(A)^{*}$ suck that $\operatorname{dim} \operatorname{Mod}(A, d, \Theta)^{s t} \geqslant 1$.
Verified Sou:
- hereditary al gebuas.
- minimal rep. -infinite special biserial and nou-distributiver [Allo182]
- special biscuial algebras [STV]
- biscuial algebras [ALP]

Bracer -Thrall II
The: [B] Suppose A is representation infinite.
There exist $d \in K_{0}(A)^{+}$and ∞-many inge comparable
$V \in \bmod (A)$ with $\operatorname{dim}(V)=d$.

5-veduced BT II

stable BT II
Conj: Suppose A is s-tilting infinite.
There exist $d \in K_{0}(A)^{+}$and $Z \in \operatorname{lor}(A)$
Conj: Suppose A is s-tilting infinite. such that Z is s-reduced with $C_{A}(Z) \geqslant 1$. There exist $d \in K_{0}(A)^{+}$and $\theta \in K_{0}(A)^{*}$ suck that $\operatorname{dim} \operatorname{Mod}(A, d, O)^{s t} \geqslant 1$.

Demonet's conjecture
Conj: Suppose A is 3 -tilting infinite.
Then, there exists $y \in K_{0}\left(p 0_{0} A\right)$ such that $\bar{G} \notin \operatorname{Tan}(A)$.

Representation tame

Indecomposables of any fixed dimension are parametrized by finitely many points and rational curves.
generically s s-veduced tame
For all generically indecomposable and g-veduced $Z \in \operatorname{lv}(A)$ is

$$
\begin{aligned}
& c_{A}(Z) \leqslant l . \\
& \|[G L F S]
\end{aligned}
$$

E-tame $[D F, A I]$
For all s-veduced $Z \in \operatorname{lov}(A)$ is

$$
\operatorname{hom}_{A}^{3}(z, z)=0
$$

$$
\min _{V, W \in \mathcal{Z}} \operatorname{dim}_{K} \operatorname{Hom}_{A}\left(V, \sigma_{A} W\right)
$$

$$
\begin{aligned}
& g-\operatorname{tame}[A Y] \\
& K_{0}(p \operatorname{poj} A) \leq \overline{\operatorname{Fan}(A)}
\end{aligned}
$$

$$
<\frac{\text { [Alai, TY] }}{} \frac{\text { wall tame }}{\prod_{V \neq 0} W T(V) \leq K_{0}(A)_{R}^{*}}
$$

Wall tame [BST]
has finite measure.

3-veduced BT II
Conj: Suppose A is s-tilting infinite. There exist $d \in K_{0}(A)^{+}$and $Z \in \operatorname{lor}(A)$ suck that Z is s-reduced with $c_{A}(Z) \geqslant 1$.

stable BT II
Conj: Suppose A is 5 -tilting infinite. There exist $d \in K_{0}(A)^{+}$and $\theta \in K_{0}(A)^{*}$ suck that $\operatorname{dim} \operatorname{Mod}(A, d, \Theta)^{s t} \geqslant 1$.

Demonet's conjecture
Conj: Suppose A is J-tilting infinite.
Then, there exists $y \in K_{0}\left(p 0_{j} A\right)$ such that $y \notin \operatorname{Tan}(A)$.

Thn:[P'23] Suppose A is E-tame. Then, the following implication holds:
A saris pies 5 -veduced IST II $\Longrightarrow A$ satisfies the stable BTI
If Idea: Given 5 -veluced $Z \in \operatorname{lu}(A)$ with $C_{A}(Z) \geq 1$
Consider $\theta:=\langle g(Z),-\rangle_{A} \in K_{0}(A)^{*}$
Construct Θ-stable modules as factors of generic clements of Z.
Rh: It is enough to prove Demonet's conjecture for g-tame algebras.

An example of affine type $\mathbb{B} \mathbb{C}_{\text {. }}$
$A:=K Q / I, Q: 2 \rightarrow 1 \cap \varepsilon, I:=\left\langle\varepsilon^{4}\right\rangle$. is representation wild

\Longrightarrow minimal s-zilting infinite
[les, wang]

* wall \& g-tame
* Stability tame
* generically J-veluced tame

Thai $\left[P^{\prime} 23\right]$ These ave pairwise Hom-outhogonal with $J_{A}\left(V_{\lambda}\right) \equiv V_{\lambda} \forall \lambda \in K$. Moreover, every e-stable A-module is is omouphic to V_{∞} or V_{λ} for some $\lambda \in K$.

Valued quivers \& GLS algebras
A valued quiven Γ consists of

* Γ_{0} : a finite set of vectices
$* \Gamma_{A} \subseteq \Gamma_{0} \times \Gamma_{0}$ a set of thaif dedges s.t. $(i, j) \in \Gamma_{\lambda} \Rightarrow(j, i) \in \Gamma_{\mu}$ and $i \neq j$.
$* \Omega \leqslant \Gamma_{\mu}$ an ovientation s.t. $\left.(i, j) \in \Omega \Rightarrow \zeta_{j}, i\right) \notin \Omega$.

$$
{\stackrel{i}{c_{i}}}^{\nu_{i i} \mid \nu_{i j}} \dot{c}_{c_{j}}
$$

* $v: \Gamma_{\mu} \rightarrow \mathbb{N}_{\geqslant<}$a valuation asound to be acyalic.
* $\varsigma: \Gamma_{0} \rightarrow \mathbb{N}$ a symmetrizer s.t. $c_{i} \nu_{i j}=c_{j} \nu_{i i} \forall\left(C_{j, i}\right) \in \Gamma_{1}$.

Rk: Equivalent to the dater (C, Ω, D) of a genavalized Cantan matruix C with ovientation Ω and symmetrizen (1).
$\rightsquigarrow\left[G \alpha S^{\prime} \lambda z\right]$ Quiven $Q=Q(\Gamma)$

$$
\begin{aligned}
* Q_{0}: & =\Gamma_{0}, \\
* Q_{d}: & =\left\{\alpha_{j i}^{(g)}: i \rightarrow i j \mid(j, i) \in \Omega, 1 \leqslant g \leqslant g_{j i} i=\operatorname{gcd}\left(\nu_{i i}, \nu_{i j}\right)\right\} \\
& \cup\left\{\varepsilon_{i}: i \rightarrow i \mid i \in \Gamma_{0}\right\} .
\end{aligned}
$$

with ideal $I \leqslant K Q$ genevated by velations

- nilootency: $\varepsilon_{i}^{e_{i}}=0 \forall i \in \Gamma_{0}$,
* commatativity: $\varepsilon_{i}^{S_{i j}} \alpha_{j i}^{(g)}=\alpha_{j i}^{(g)} \varepsilon_{i}^{S_{j i}} \forall(i, j) \in \Omega$.

Valued quivers \& GLS algebras
$\mapsto\left[G \mathcal{S} S^{\prime} 17\right]$ Quiva $Q=Q(\Gamma)$

* $Q_{0}:=\Gamma_{0}$,
* $Q_{d}:=\left\{\alpha_{j i}^{(g)}: i \rightarrow j \mid(j, i) \in \Omega, 1 \leqslant g \leq g_{j i}:=\operatorname{gcd}\left(\nu_{i i}, \nu_{i j}\right)\right\}$
$\cup\left\{\varepsilon_{i}: i \rightarrow i l i \in \Gamma_{0}\right\}$.
with ideal $I \leqslant K Q$ genevated by velations
* nilpotency: $\varepsilon_{i}^{c_{i}}=0 \forall i \in \Gamma_{0}$,
* commedativity: $\varepsilon_{j}^{S_{i j}} \alpha_{j i}^{(g)}=\alpha_{j i}^{(g)} \varepsilon_{i}^{S_{j i}} \forall(i, j) \in \Omega$. when $\mathcal{L}_{j i}:=\nu_{j i} / g_{j i}$.

Thm: Let Γ be a valued quiven and $H:=H(\Gamma)$.

* [GLS'17] HI is 1 -lwaraga -Goumstein
*[Pla' 13$] \stackrel{\left[p^{\prime} 233\right.}{ } \not Z \in \operatorname{lor}(H)$ is 3 -veduced ifg Z is gencrically Locally free
[G/S'18]: $\{\notin \in \operatorname{lur}(H)$ gen. Loc. for. $\} \xrightarrow{1: 1} \mathbb{N} \Gamma_{0}$

$$
z(v) \longleftrightarrow v
$$

*[GLS'20] H is a (formal) degeneration of a species oum $K((\varepsilon))$ $v k(V):=\left(v k_{\left.k<\varepsilon_{i}\right]}^{c}\left(V_{i}\right)\right)$
$\longleftrightarrow H$ is 3 -tilaing finite is and only if Γ is of finite type (i.e. Tits foum $q \bar{r}$ is
$\ll H$ is g-tame if and only if Γ is of affine type (i.e. q_{π} is positimes demichichinite)

Valued quivers \& GLS algebras
Examples: * Γ simply laced (i.e. $c_{i}=\left\langle\forall i \in \Gamma_{0}\right.$) $\Rightarrow H$ is ordinary path algebra.

 $\frac{\mid \text { de so. }}{{\underset{\varepsilon}{i}}_{e_{i}^{i}}^{2}=t e_{i}}$ path algebra of

Affine GLS aLgebras
Tm : [T'23] Suppose $\Gamma^{\text {connected }}$ is $V_{0} \int$ affine type with minimal symmetrized. (i.e. $\operatorname{gcd}\left(c_{i}\right)=1$) Then $H:=H(\Gamma)$ is generically 3 -reduced tame.
Move precisely, every $v \in \mathbb{N} \Gamma_{0}$ can be decomposed as
$V=m \cdot \eta+w$, ("gquevalizad Kac' decomposition")
for some $w \in \mathbb{N} \Gamma_{0}, m \in \mathbb{N}$ and $\eta \in \mathbb{N} \Gamma_{0},\{0\}$ the primitive null root (i.e. minimal such that

$$
\text { with } \left.q_{\Gamma}(\eta)=0\right)
$$

$$
z(v)=\overline{z(\eta)^{m} \oplus z(w)},
$$

$$
z(w)=\overline{G(w)},
$$

$$
z(\eta)=\overline{\bigcup_{\lambda \in \mathbb{R}^{2}} O\left(V_{\lambda}\right)}
$$

cohere $W \in \bmod (A)$ is s-vigid
and $V_{2} \in \bmod (A)$ is an explicit 1 -parameter family of locally free modules Moreover, for almost all $\lambda \in \mathbb{R}^{1}$ is

* $\Im_{H}\left(V_{\lambda}\right) \cong V_{\lambda}$
* V_{2} is ∂-stable for the elefect $\partial:=\langle\eta,\rangle_{H}: K_{0}(A)^{*}$.

Question: Ave these together with the stable modules associated to S-vigid modules all stable H-modules ie. is H stability tame?
c.f. $[B D G]$ on plane degeneration of elliptic carves.

$$
\frac{\text { Thank }}{\text { You! }}
$$

Abbreriation of rames: (in onder of appearance)
AIR: Adachi-lyama-Reiten.
AI : Asai-lyama
AY: Aoki-Yuvikusa

BST: Bristle-Smith-ivedfinger
PY: Plamondon-Yurikusa
BDG: Bodnanchuk-Drozd-Grenel
DIJ: Demonet - lyama - Jasso
ST : Scheroll - Tveffinger
MPP: Mouravand - Paquette
3 : Bautista
GLS: Geiß-Leclerc-Schrōer
Mo : Mlousarand
STV: Sckroll - Treffinger -Valdivieso
Pla: Plamondon
CC: Carvoll - Chinduis
GLFS: Geiß-Labarodini-Trugaso - Schnöer
DF: Derksen-Fei

