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1. Basic definitions

K=K
R is a locally bounded K-category, that is, R is isomorphic with a
bound quiver K-category of some locally finite quiver.

Finite locally bounded K-categories are identified with bound quiver
K-algebras.

MOD(R) is the category of right R-modules, that is, K-linear
contravariant functors M : R —MOD(K).

Mod(R) is the category of locally finite dimensional R-modules,
that is, M € Mod(R) iff

Vyeob(r) dimk M(x) < oo.

mod(R) is the full subcategory of finite dimensional R-modules,
that is, M € mod(R) iff

dimM = Z dimy M(x) < oo.
x€ob(R)
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1. Basic definitions

e G(R) is the category of contravariant K-linear functors
mod(R) — mod(K).

e F(R) is the full subcategory of G(R) formed by finitely presented
functors, that is, functors T € G(R) such that there is an exact
sequence of functors

R(— M) "D (N T 0,

for some M, N,f : M— N € mod(R). Then T = Cokerg(—,f).
e Categories G(R), F(R) are abelian.
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2. The motivation and some results

Assume C is a skeletally small abelian category.

e The Krull-Gabriel filtration (C, ), of C is a filtration of C by Serre
subcategories defined recursively as follows:

(1) C—1 =0 and Cq+1 is the Serre subcategory of C formed by all objects
of C having finite length in the Serre quotient category C/Ca, for any
ordinal number «,

(2) Cs =U,pCa, for any limit ordinal 3.

e The Krull-Gabriel dimension KG(C) of C is the smallest ordinal
number « such that C, = C, if it exists. Otherwise, set KG(C) = occ.

e If KG(C) = n € N, then the Krull-Gabriel dimension of C is finite. If
KG(C) = oo, then the Krull-Gabriel dimension of C is undefined.

o We set KG(R) := KG(F(R)).
Motivation: The conjecture of Prest.

An algebra A is of domestic representation type
if and only if KG(A) is finite.
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2. The motivation and some results

All known results support the conjecture of Prest. In particular:

e Ais of finite representation type if and only if KG(A) =0
(Auslander’'82).

o KG(A) # 1 (Krause'98).
e If Ais hereditary of Euclidean type, then KG(A) = 2 (Geigle'86).

e KG(A) = oo for the following classes of algebras: wild (Prest’88),
tubular (Geigle’'86), string of non-domestic type (Schrder'00),
pg-critical (Kasjan-Pastuszak'14).

e If Ais a string algebra of domestic type, then KG(A) is finite
(Laking-Prest-Puninski'16).

e A is strongly simply connected: A is of domestic type if and only if
KG(A) is finite (Wenderlich'96).

e A s generalized multicoil algebra: A is of domestic type if and only
if KG(A) is finite (Malicki'15).

e Ais a cycle-finite algebra of infinite representation type:
A is domestic if and only if KG(A) is finite (Skowronski'16).
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2. The motivation and some results

A locally bounded K-category R is cycle-finite, if for any cycle
Mo % My — ... M, 5 M, = My

of non-zero non-isomorphisms in ind(R), we have f;, ..., f, ¢ radg .

Question (Skowronski'16).

Is it possible to apply the result for cycle-finite algebras in the study of
Krull-Gabriel dimension of standard selfinjective algebras of infinite
representation type?

These algebras have "nice" Galois coverings (by a cycle-finite
categories). Do they preserve KG dimension?

Theorem (Pastuszak'19).

Assume R is a locally support-finite locally bounded K-category, G is a
torsion-free admissible group of K-linear automorphisms of R. Assume
that A = R/G is the orbit category and F : R — A the associated Galois
covering. Then KG(R) = KG(A).
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3. Short reminder on Galois coverings

Let R, A be locally bounded K-categories, G a group of K-linear
automorphisms of R acting freely on ob(R) (that is gx = x if and only if
g =1, forany g € G, x € ob(R)). Then a K-linear functor F : R— A is
a Galois covering, if:

e F: R— A induces isomorpisms

P Riex, y) = A(F(x = P R(x, gv)
geG geiG
of vector spaces, for any x,y € ob(R),
e F: R— Ainduces a surjective function ob(R) — ob(A),
e Fg=F, forany g € G,
e for any x,y € ob(R) such that F(x) = F(y) there is g € G with
&=y
In the above case, the functor F induces an isomorphism A 22 R/G where
R/G is the orbit category.
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3. Short reminder on Galois coverings

Assume R is a locally bounded K-category, G is a group of K-linear
automorphisms of R acting freely on ob(R) and F: R—»A X R/G the
associated Galois covering. Then:

e The pull-up functor F, : MOD(A) — MOD(R) is the exact functor
(=)o Fer.

e F, has the left adjoint F\ : MOD(R) — MOD(A) and the right
adjoint F, : MOD(R) — MOD(A) which are the push-down
functors.

e Assume M € MOD(R), a € ob(A) and a = F(x), for x € ob(R).
Then Fy(M)(a) = D, cc M(gx) and F(M)(a) = [],cc M(gx).
Note that FA(mod(R)) - IIlOd(A) and F/\|mod(R) = Fp|mod(R)-

e The group G acts on mod(R) as €M := Mo g~ and on
homomorphisms in a natural way.

e If G is torsion-free, then it acts freely on ind(R), that is, 8N = N
yields g =1, for any N € ind(R).
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3. Short reminder on Galois coverings

Let R be locally bounded K-category.

e For M € MOD(R), the support supp(M) of M is the full
subcategory of R formed by all objects x in R such that M(x) # 0.

e The category R is locally support-finite, if for any object x of R
the union of the sets supp(N), where N € ind(R) and N(x) # 0, is
finite.

Theorem.

Assume R is a locally support-finite K-category, G an admissible
torsion-free group of K-linear automorphisms of R and F : R — A the
Galois covering. Then the functor Fy : mod(R) — mod(A) is a Galois
covering of module categories, that is,

mod(R)/G = mod(A).

In particular: F) is dense, preserves indecomposable modules and
Auslander-Reiten sequences.
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4. Galois coverings preserving Krull-Gabriel dimension

The proof that KG(R) = KG(A) is based on the general facts:
Fact 1.

Assume C, D are abelian categories and F : C — D is an exact functor.
(1) If Fis full and dense, then KG(D) < KG(C).
(2) If F is faithful, then KG(C) < KG(D).

Fact 2.

Assume R is locally support-finite locally bounded K-category and G is
an admissible group of K-linear automorphisms of R. There is a finite
convex subcategory Bg of R, the fundamental domain of R, such that
for any M € ind(R) there is g € G with supp(é M) C Bg.

The sketch of the proof of (Pastuszak'19).

Recall that F : R— A is a Galois covering with R-Isf, G- torsion-free.
We define two exact functors

& : F(R)— F(A) and A : F(A) — F(Bg),

and use Fact 1.
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4. Galois coverings preserving Krull-Gabriel dimension

Assume T € F(R), then T = Cokerg(—, f), for f : M — N in mod(R).

ﬁ i(s Isf(;l (Ij\l;:'l)(l;);illzd(l?d)(%) mod(R) —= MOD(K)
mod(A)

T — T : Add(mod(R)) = MOD(K) - additive closure of T

(T(eM) = & T (M) .
Define @ : F(R) — G(A) as (T) = T o F,. It can be shown that

®(T) = T o F, = Cokera(Fo(—), f) = Cokera(—, Frf) € F(A)

since (Fa, F,) is an adjoint pair and Fy = F, on mod(R).
e & is well-defined (does not depend on the presentation of T) and
exact (as a composition).

e & is faithful (F\ is dense and Fo(FA(M)) = D, ccEM).
e Hence we obtain KG(R) < KG(A).
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4. Galois coverings preserving Krull-Gabriel dimension

Assume U € F(A) and £ : mod(Bgr) — mod(R) is the extension by zeros.

Define A : F(A) — F(Bg) as mod(A) -4 mod(K)
AU)=UoFyo&. A
mod(R)
he
mod(BR)

€ is exact, full and faithful, hence KG(Bgr) < KG(R).
It can be shown that A is well-defined (U o F) o £ € F(Bg)).
Fy o & is dense (since Bg is a fundamental domain),

e A is exact and faithful (as a composition with a dense functor).
e Hence we obtain KG(A) < KG(Bgr) < KG(R).

Conclusion.
KG(R) = KG(Bg) = KG(A)

13/29



5. Krull-Gabriel dimension of repetitive category

A a finite dimensional K-algebra, D(A) = Homg (A, K) - A-A-bimodule

— repetitive category of A

)
I
S
N
o
PN
o

e It is locally fin. dim. K-algebra (locally bounded K-category), A; = A and
D(A); = D(A), and there are only finitely many non-zero entries.

e Identity maps Ai— Ai—1, D(A); = D(A)i—1 induce an automorphism
v:A=A

e There is a Galois covering G : A— Z\\/<1/> = T(A), where
T(A) =2 Ax D(A) is a trivial extension algebra.

Theorem. (Assem-Skowronski'93)

The repetitive category A of algebra A is Isf and tame if and only if A~B
where B is tilted algebra of Dynkin or Euclidean type, or tubular algebra.
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5. Krull-Gabriel dimension of repetitive category

Corollary 1. (Pastuszak'19)
Let A be an algebra such that A is Isf. Then KG(A) € {0,2, o0} and:

(@) KG(E) =0 if and only if A2 B for B tilted of Dynkin type;
(b) KG(A) =2 if and only if A= B for B tilted of Euclidean type;
(c) KG(A) = oo if and only if A is wild or A= B for B tubular.

e B- Euclidean type = B - cycle finite of domestic type = fund. domain C

cycle finite of domestic type = KG(B) = KG(C) =2

e B - tubular = B C B - convex = KG(B) < KG(§) = KG(I§) =00
Corollary 2. (Pastuszak'19)
A standard selfinjective algebra of infinite type
(a) if A domestic then KG(A) = 2;
(b) if A nondomestic of polynomial growth then KG(A) = cc.

o A §/G G 2 7, B - cycle-finite, tame and Isf:

B - tilted Euclidean = KG(A) = KG(B) = 2
B - tubular = KG(A) = KG(B) = o
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6. Krull-Gabriel dimension of cluster repetitive category

C tilted algebra, E = Ext%(DC, C) - C-C-bimodule

— cluster repetitive category of C

X

I
o
o

Identity maps C; — C;_1, E; — E;j_1 induce an aut9morphism v:C—C
and we have a Galois covering G: C = C/(v) = C

C =~ C x Ext2(DC, C) relation extension algebra

Endc,(T) - cluster tilted algebra of type Q

Theorem. (Assem-Briistle-Schiffler'08)

A'is a cluster tilted algebra of type Q if and only if A= C for tilted
algebra C of type Q.
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6. Krull-Gabriel dimension of cluster repetitive category

Proposition.
There exists a fundamental domain B of C and hence C is Isf and
KG(C) = KG(C).
o Assem-Briistle-Schiffler defined a fundamental domain for push-down
functor Gy : mod(C) —modC.

e The cluster duplicated algebra { CL:_O CO } is a fund. domain of C.
1

Theorem. (Assem-Briistle-Schiffler'08)

There exists an additive K-linear functor ¢ : mod(C) — mod(C) which is full,
dense (and exact) such that Ker(¢) equals the class of all homomorphisms in
mod(C) which factorize through add(Kc), where

Ke={P.,m7'Q7(C) | x € (C)o, i € Z} C mod(C).

e P, is an indecomposable projective C-module at the vertex x € (6)0

e 7 = 7 is the Auslander-Reiten translation in mod(f), Q - syzygy functor
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6. Krull-Gabriel dimension of cluster repetitive category

Aim: KG(C) < KG(C)

Theorem 1. (- -Pastuszak'22)

(1) K¢ is hom-support finite, that is for any N € mod(C ) there is only
finitely many objects X € K¢ such that »(X,N) # 0.

(2) add(Kc¢) is contravariantly finite class in mod(C), that is for any

N e mod(f) there exists My € add(K¢) and an : My — N such
that

(*,an)

el My) 5% 2(%,N) =0 is exact for % € add(KCc).

(3) The functor A,: F(C) —>g(5) defined as the composition (—) o ¢
#) € F(C).

satisfies the condition Im(A
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6. Krull-Gabriel dimension of cluster repetitive category

Sketch of the proof:

(1) R o R
Ke = {P, 7 (C) | x € (C)o,i € Z}

e ( tilted of Euclidean or wild type A:
Me= \/(Xq Vv Cq)
q€Z

where q € Z, stable part Ay is of the form ZA Cj is a union either of
stable tubes or of components of the form ZA

(2) Take My = Bxcr (c(X. V) @x X),
ay: My — N, ay(f ® x) = f(x), for any f € 4(X, N) and x € X.
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6. Krull-Gabriel dimension of cluster repetitive category

(3) Let U € F(C), hence

(¢(=),Y) = Up—0

I
=
L
Ra$
I

is exact. It's enough to show #(¢(—), Z) € F(C) since F(C) is
abelian.
Since ¢ is dense, #(¢(—),Z) =¢ (¢(—), (N)) for some

~

N € mod(C).
Applying (2) we can show that

(= M) < (2 W) D (6=, G(N)) O,

where ¢ is natural transformation of functors (¢x(f) = ¢(f)), is

exact.
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6. Krull-Gabriel dimension of cluster repetitive category

Corollary.
KG(C) < KG(C)

e Ay: F(C) —>]~'(5) (composition (—) o ¢) is exact and faithful.

Theorem 2. (- -Pastuszak'22)

KG(C) = KG(C) = KG(C) € {0,2, 00}, for any tilted algebra C, and the
following assertions hold:

(1) Cis tilted of Dynkin type if and only if KG(C) = 0.
(2) Cis tilted of Euclidean type if and only if KG(C) = 2.
(3) Cis tilted of wild type if and only if KG(C) = oc.
In particular, Prest conjecture is valid for cluster-tilted algebras.
e C of Euclidean type = KG(C) = KG(C) < KG(C) = 2, but KG(C) # 0, 1

e ( either of Dynkin, or of Euclidean or of wild type - equivalences
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6. Krull-Gabriel dimension of cluster repetitive category

Theorem. (Bobinski'22)

If H= KQ is a hereditary algebra and C is a cluster-tilted algebra of type
Q, then KG(C) = KG(H).

o (Geigle'86): C be a category such that F(C) is abelian and B be a full
subcategory of C with only finitely many indecomposable objects up to
isomorphism, Sx € F(C) for each X € B:

KG(C) = KG(C/[B])

o KG(C) = KG(Cq) and KG(H) = KG(Cq)
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7. Some generalization and its applications.

Assume F : R— A is a Galois covering.
(1) Recall that if R is Isf, then F) : mod(R) — mod(A) is dense and

Fo(mod(A)) C Add(mod(R)).

Hence we may define T : Add(mod(R)) — Mod(K) (additive
closure of T) and set ®(T) := T o F,.

(2) If R is arbitrary (and thus F) may not be dense), the construction of
o : F(R)— F(A) such that

®(Cokerg(—, f)) = Cokera(—, Fx(f))

is as follows.
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7. Some generalization and its applications.

Assume C is locally bounded and let H(C) be the morphism category
of C, that is:

e objects of H(C) are homomorphisms in mod(C).

e morphisms in H(C) are pairs (a,b) : f — f’ of homomorphisms in
mod(C) such that the following diagram commutes:
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7. Some generalization and its applications.

Define the functor
Ckce : H(C)— F(C)
as f — Cokerc(—, f) (on objects). Properties:
e Ckc is full and dense.

e The kernel K¢ := Ker(Ck¢) is formed by null-homotopic
morphisms, that is, morphisms (a, b) : f — f’ for which there is
s: N— M with b= f's:

e We obtain H(C)/Kc = F(C).
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7. Some generalization and its applications.

Define the functor
FIH(R) — H(A)

as f — Fx(f) (on objects). Properties:
o easy to see that F*(Kgr) C Ka, so F}* induces

o F(R) 2 H(R)/Kr — H(A)/Ka = F(A)
such that ®(Cokerg(—, f)) = Cokera(—, FA(f)):

Ckr

H(R) F(R)
|

o

H(A) F(A)

o & exact, because F{! is exact; one can show that ¢ is faithful.

Theorem. (- -Pastuszak'23)
Assume F : R — Ais a Galois covering. Then KG(R) < KG(A).

26 /29



7. Some generalization and its applications.

Remark

If Fy is dense and G torsion-free, then Pastuszak proved that

¢ : F(R)— F(A) is a Galois precovering of functor categories, that is:
e G acts freely on F(R) as (gT)(X) = T(¢ " X).

e There are natural isomorphisms of vector spaces

@J—' (&T1, T2) = F(a)(®(T1), P(T2)).
geG

e We have &(T) =2 ®(gT) and ®(T1) = &(T,) implies Ty = hT,, for
some h € G, if Ty, T, have local endomorphism rings.

Remark.

(1) The above theorem can be viewed as some instance of general
results of Asashiba from A generalization of Gabriel's Galois covering
functors and derived equivalences (obtained independently).

(2) For arbitrary F : R— A and G, the functor ¢ : F(R) — F(A) is not
a Galois precovering.
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7. Some generalization and its applications.

Let T be triangulation of a surface S, T an orientation of triangles,

(Q, ) =(Q(S, f), f) the associated triangulation quiver, m,, co Weight
and parameter functions on (Q, f).

Weighted surface algebra A = A(S, T, m., Ce) = KQ/I, where (Q,f) is
a triangulation quiver, generators of | depend on permutation f.
Exceptional families: disc algebras D()\), tetrahedral algebras A()),
triangle algebras T()\), spherical algebras S(\) for any A € K*.

Theorem (Erdmann-Skowronski'20)

(1) Weighted surface algebras A not isomorphic to D(A), A(X), T(A),
S()\) are tame of non-polynomial growth.

(2) For A not isomorphic to D(\), A(X), T()), S(A), D(A)®), D(N)@),
there exists a quotient algebra ' = A/L of A which is a string
algebra of non-polynomial growth.

Observe that in (2) there is modl' — modA - faithful, exact =
KG(I') < KG(A). Hence KG(A) = oc.
For D(A\)®), D(A)®) we also have KG(A) = oo.

28 /29



7. Some generalization and its applications.

If A1 then D(X), A(A), T(XA), S(XA) are of polynomial growth and:
e tetrahedral algebras A(X) = T(B(\)) for B(\) tubular algebra of
type (2,2,2,2),
e disc algebras D(\) = A(N)/Zs,
)= T

e spherical algebras S(X)) = T(C())) for C(X) tubular algebra of type

(2,2,2,2),
o triangle algebras T(X\) = S(\)/Zo,.
By applying new theorem in this case also KG(A) = oo.

Theorem. (- -Pastuszak'23)
Periodic weighted surface algebras A have KG(A) = oo.
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