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1. Basic de�nitions

� K = K

� R is a locally bounded K -category, that is, R is isomorphic with a
bound quiver K -category of some locally �nite quiver.

� Finite locally bounded K -categories are identi�ed with bound quiver
K -algebras.

� MOD(R) is the category of right R-modules, that is, K -linear
contravariant functors M : R→MOD(K ).

� Mod(R) is the category of locally �nite dimensional R-modules,
that is, M ∈ Mod(R) i�

∀x∈ob(R) dimK M(x) < ∞.

� mod(R) is the full subcategory of �nite dimensional R-modules,
that is, M ∈ mod(R) i�

dimM =
∑

x∈ob(R)

dimK M(x) < ∞.
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1. Basic de�nitions

� G(R) is the category of contravariant K -linear functors
mod(R)→mod(K ).

� F(R) is the full subcategory of G(R) formed by �nitely presented

functors, that is, functors T ∈ G(R) such that there is an exact
sequence of functors

R(−,M)
R (−,f )−→ R(−,N)→T → 0,

for some M,N, f : M→N ∈ mod(R). Then T ∼= CokerR(−, f ).

� Categories G(R),F(R) are abelian.
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2. The motivation and some results

Assume C is a skeletally small abelian category.

� The Krull-Gabriel �ltration (Cα)α of C is a �ltration of C by Serre
subcategories de�ned recursively as follows:

(1) C−1 = 0 and Cα+1 is the Serre subcategory of C formed by all objects
of C having �nite length in the Serre quotient category C/Cα, for any
ordinal number α,

(2) Cβ =
⋃

α<β Cα, for any limit ordinal β.

� The Krull-Gabriel dimension KG(C) of C is the smallest ordinal
number α such that Cα = C, if it exists. Otherwise, set KG(C) = ∞.

� If KG(C) = n ∈ N, then the Krull-Gabriel dimension of C is �nite. If
KG(C) = ∞, then the Krull-Gabriel dimension of C is unde�ned.

� We set KG(R) := KG(F(R)).

Motivation: The conjecture of Prest.

An algebra A is of domestic representation type

if and only if KG(A) is �nite.
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2. The motivation and some results

All known results support the conjecture of Prest. In particular:

� A is of �nite representation type if and only if KG(A) = 0
(Auslander'82).

� KG(A) ̸= 1 (Krause'98).

� If A is hereditary of Euclidean type, then KG(A) = 2 (Geigle'86).

� KG(A) = ∞ for the following classes of algebras: wild (Prest'88),
tubular (Geigle'86), string of non-domestic type (Schröer'00),
pg-critical (Kasjan-Pastuszak'14).

� If A is a string algebra of domestic type, then KG(A) is �nite
(Laking-Prest-Puninski'16).

� A is strongly simply connected: A is of domestic type if and only if
KG(A) is �nite (Wenderlich'96).

� A is generalized multicoil algebra: A is of domestic type if and only
if KG(A) is �nite (Malicki'15).

� A is a cycle-�nite algebra of in�nite representation type:
A is domestic if and only if KG(A) is �nite (Skowro«ski'16).
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2. The motivation and some results

A locally bounded K -category R is cycle-�nite, if for any cycle

M0

f1→ M1→ . . .→Mr−1

fr→ Mr = M0

of non-zero non-isomorphisms in ind(R), we have f1, . . . , fr /∈ rad∞R .

Question (Skowro«ski'16).
Is it possible to apply the result for cycle-�nite algebras in the study of
Krull-Gabriel dimension of standard sel�njective algebras of in�nite
representation type?
These algebras have "nice" Galois coverings (by a cycle-�nite
categories). Do they preserve KG dimension?

Theorem (Pastuszak'19).
Assume R is a locally support-�nite locally bounded K -category, G is a
torsion-free admissible group of K -linear automorphisms of R. Assume
that A = R/G is the orbit category and F : R→A the associated Galois
covering. Then KG(R) = KG(A).
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3. Short reminder on Galois coverings

Let R, A be locally bounded K -categories, G a group of K -linear
automorphisms of R acting freely on ob(R) (that is gx = x if and only if
g = 1, for any g ∈ G , x ∈ ob(R)). Then a K -linear functor F : R→A is
a Galois covering, if:

� F : R→A induces isomorpisms⊕
g∈G

R(gx , y) ∼= A(F (x),F (y)) ∼=
⊕
g∈G

R(x , gy)

of vector spaces, for any x , y ∈ ob(R),

� F : R→A induces a surjective function ob(R)→ ob(A),

� Fg = F , for any g ∈ G ,

� for any x , y ∈ ob(R) such that F (x) = F (y) there is g ∈ G with
gx = y .

In the above case, the functor F induces an isomorphism A ∼= R/G where
R/G is the orbit category.
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3. Short reminder on Galois coverings

Assume R is a locally bounded K -category, G is a group of K -linear
automorphisms of R acting freely on ob(R) and F : R→A ∼= R/G the
associated Galois covering. Then:

� The pull-up functor F• : MOD(A)→MOD(R) is the exact functor
(−) ◦ F op.

� F• has the left adjoint Fλ : MOD(R)→MOD(A) and the right
adjoint Fρ : MOD(R)→MOD(A) which are the push-down
functors.

� Assume M ∈ MOD(R), a ∈ ob(A) and a = F (x), for x ∈ ob(R).
Then Fλ(M)(a) =

⊕
g∈G M(gx) and Fρ(M)(a) =

∏
g∈G M(gx).

Note that Fλ(mod(R)) ⊆ mod(A) and Fλ|mod(R) = Fρ|mod(R).

� The group G acts on mod(R) as gM := M ◦ g−1 and on
homomorphisms in a natural way.

� If G is torsion-free, then it acts freely on ind(R), that is, gN ∼= N
yields g = 1, for any N ∈ ind(R).
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3. Short reminder on Galois coverings

Let R be locally bounded K -category.

� For M ∈ MOD(R), the support supp(M) of M is the full
subcategory of R formed by all objects x in R such that M(x) ̸= 0.

� The category R is locally support-�nite, if for any object x of R
the union of the sets supp(N), where N ∈ ind(R) and N(x) ̸= 0, is
�nite.

Theorem.
Assume R is a locally support-�nite K -category, G an admissible
torsion-free group of K -linear automorphisms of R and F : R→A the
Galois covering. Then the functor Fλ : mod(R)→mod(A) is a Galois
covering of module categories, that is,

mod(R)/G ∼= mod(A).

In particular: Fλ is dense, preserves indecomposable modules and
Auslander-Reiten sequences.
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4. Galois coverings preserving Krull-Gabriel dimension

The proof that KG(R) = KG(A) is based on the general facts:

Fact 1.
Assume C,D are abelian categories and F : C→D is an exact functor.

(1) If F is full and dense, then KG(D) ≤ KG(C).
(2) If F is faithful, then KG(C) ≤ KG(D).

Fact 2.
Assume R is locally support-�nite locally bounded K -category and G is
an admissible group of K -linear automorphisms of R. There is a �nite
convex subcategory BR of R, the fundamental domain of R, such that
for any M ∈ ind(R) there is g ∈ G with supp(gM) ⊆ BR .

The sketch of the proof of (Pastuszak'19).
Recall that F : R→A is a Galois covering with R-lsf, G - torsion-free.
We de�ne two exact functors

Φ : F(R)→F(A) and Λ : F(A)→F(BR),

and use Fact 1.
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4. Galois coverings preserving Krull-Gabriel dimension

Assume T ∈ F(R), then T = CokerR(−, f ), for f : M→N in mod(R).

R is lsf: Ind(R) = ind(R) ⇒
F•(mod(A)) ⊆ Add(mod(R))

mod(R)
T // MOD(K )

mod(A)

99rrrrrrrrrr

T 7−→ T̂ : Add(mod(R))→MOD(K ) - additive closure of T
(T̂ (⊕Mi ) = ⊕T (Mi ))
De�ne Φ : F(R)→G(A) as Φ(T ) = T̂ ◦ F•. It can be shown that

Φ(T ) = T̂ ◦ F• = CokerA(F•(−), f ) ∼= CokerA(−,Fλf ) ∈ F(A)

since (F•,Fρ) is an adjoint pair and Fλ = Fρ on mod(R).

� Φ is well-de�ned (does not depend on the presentation of T ) and
exact (as a composition).

� Φ is faithful (Fλ is dense and F•(Fλ(M)) ∼=
⊕

g∈G
gM).

� Hence we obtain KG(R) ≤ KG(A).
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4. Galois coverings preserving Krull-Gabriel dimension

Assume U ∈ F(A) and E : mod(BR)→mod(R) is the extension by zeros.

De�ne Λ : F(A)→F(BR) as
Λ(U) = U ◦ Fλ ◦ E .

mod(A)
U // mod(K )

mod(R)

Fλ

OO

mod(BR)

E
OO

� E is exact, full and faithful, hence KG(BR) ≤ KG(R).

� It can be shown that Λ is well-de�ned (U ◦ Fλ ◦ E ∈ F(BR)).

� Fλ ◦ E is dense (since BR is a fundamental domain),

� Λ is exact and faithful (as a composition with a dense functor).

� Hence we obtain KG(A) ≤ KG(BR) ≤ KG(R).

Conclusion.
KG(R) = KG(BR) = KG(A)
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5. Krull-Gabriel dimension of repetitive category

A a �nite dimensional K -algebra, D(A) = HomK (A,K ) - A-A-bimodule

Â =



. . . 0

. . . A−1

D(A)0 A0

D(A)1 A1

0
. . .

. . .


− repetitive category of A

� It is locally �n. dim. K -algebra (locally bounded K -category), Ai = A and
D(A)i = D(A), and there are only �nitely many non-zero entries.

� Identity maps Ai →Ai−1, D(A)i →D(A)i−1 induce an automorphism

ν : Â→ Â.

� There is a Galois covering G : Â→ Â/⟨ν⟩ = T (A), where
T (A) ∼= A⋉ D(A) is a trivial extension algebra.

Theorem. (Assem-Skowro«ski'93)
The repetitive category Â of algebra A is lsf and tame if and only if Â ∼= B̂
where B is tilted algebra of Dynkin or Euclidean type, or tubular algebra.
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5. Krull-Gabriel dimension of repetitive category

Corollary 1. (Pastuszak'19)
Let A be an algebra such that Â is lsf. Then KG(Â) ∈ {0, 2,∞} and:

(a) KG(Â) = 0 if and only if Â ∼= B̂ for B tilted of Dynkin type;

(b) KG(Â) = 2 if and only if Â ∼= B̂ for B tilted of Euclidean type;

(c) KG(Â) = ∞ if and only if Â is wild or Â ∼= B̂ for B tubular.

� B- Euclidean type ⇒ B̂ - cycle �nite of domestic type ⇒ fund. domain C
cycle �nite of domestic type ⇒ KG(B̂) = KG(C) = 2

� B - tubular ⇒ B ⊂ B̂ - convex ⇒ KG(B) ≤ KG(B̂) ⇒ KG(B̂) = ∞

Corollary 2. (Pastuszak'19)
A standard sel�njective algebra of in�nite type

(a) if A domestic then KG(A) = 2;

(b) if A nondomestic of polynomial growth then KG(A) = ∞.

� A ∼= B̂/G , G ∼= Z, B̂ - cycle-�nite, tame and lsf:

B - tilted Euclidean ⇒ KG(A) = KG(B̂) = 2

B - tubular ⇒ KG(A) = KG(B̂) = ∞
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6. Krull-Gabriel dimension of cluster repetitive category

C tilted algebra, E = Ext2C (DC ,C ) - C -C -bimodule

Č =



. . . 0

. . . C−1

E0 C0

E1 C1

0
. . .

. . .


− cluster repetitive category of C

Identity maps Ci →Ci−1, Ei →Ei−1 induce an automorphism ν : Č → Č
and we have a Galois covering G : Č → Č/⟨ν⟩ = C̃

C̃ ∼= C ⋉ Ext2C (DC ,C ) relation extension algebra

EndCQ
(T ) - cluster tilted algebra of type Q

Theorem. (Assem-Brüstle-Schi�er'08)
A is a cluster tilted algebra of type Q if and only if A = C̃ for tilted
algebra C of type Q.
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6. Krull-Gabriel dimension of cluster repetitive category

Proposition.
There exists a fundamental domain B of Č and hence Č is lsf and
KG(Č ) = KG(C̃ ).

� Assem-Brüstle-Schi�er de�ned a fundamental domain for push-down
functor Gλ : mod(Č)→modC̃ .

� The cluster duplicated algebra

[
C0 0
E C1

]
is a fund. domain of Č .

Theorem. (Assem-Brüstle-Schi�er'08)
There exists an additive K -linear functor ϕ : mod(Ĉ)→mod(Č) which is full,
dense (and exact) such that Ker(ϕ) equals the class of all homomorphisms in

mod(Ĉ) which factorize through add(KC ), where

KC = {P̂x , τ
1−iΩ−i (C) | x ∈ (Ĉ)0, i ∈ Z} ⊂ mod(Ĉ).

� P̂x is an indecomposable projective Ĉ -module at the vertex x ∈ (Ĉ)0

� τ = τĈ is the Auslander-Reiten translation in mod(Ĉ), Ω - syzygy functor
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6. Krull-Gabriel dimension of cluster repetitive category

Aim: KG(Č ) ≤ KG(Ĉ )

Theorem 1. (� -Pastuszak'22)

(1) KC is hom-support �nite, that is for any N ∈ mod(Ĉ ) there is only
�nitely many objects X ∈ KC such that Ĉ (X ,N) ̸= 0.

(2) add(KC ) is contravariantly �nite class in mod(Ĉ ), that is for any

N ∈ mod(Ĉ ) there exists MN ∈ add(KC ) and αN : MN →N such
that

Ĉ (∗,MN)
Ĉ (∗,αN )−−−−−→ Ĉ (∗,N)→ 0 is exact for ∗ ∈ add(KC ).

(3) The functor Λϕ : F(Č )→G(Ĉ ) de�ned as the composition (−) ◦ ϕ
satis�es the condition Im(Λφ) ⊆ F(Ĉ ).
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6. Krull-Gabriel dimension of cluster repetitive category

Sketch of the proof:

(1)

KC = {P̂x , τ
1−iΩ−i (C ) | x ∈ (Ĉ )0, i ∈ Z}

� C tilted of Euclidean or wild type ∆:

ΓĈ =
∨
q∈Z

(Xq ∨ Cq)

where q ∈ Z, stable part X s
q is of the form Z∆ Cs

q is a union either of
stable tubes or of components of the form ZA∞

(2) Take MN =
⊕

X∈KC
(Ĉ (X ,N)⊗K X ),

αN : MN →N, αN(f ⊗ x) = f (x), for any f ∈ A(X ,N) and x ∈ X .
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6. Krull-Gabriel dimension of cluster repetitive category

(3) Let U ∈ F(Č ), hence

Č (−,X ) Č (−,f )−−−−→Č (−,Y ) −→ U→ 0

is exact. Then Uϕ ∈ G(Ĉ ) and

Č (ϕ(−),X ) Č (ϕ(−),f )−−−−−−→ Č (ϕ(−),Y ) −→ Uϕ→ 0

is exact. It's enough to show Č (ϕ(−),Z ) ∈ F(Ĉ ) since F(Ĉ ) is
abelian.
Since ϕ is dense, Č (ϕ(−),Z ) =Č (ϕ(−), ϕ(N)) for some

N ∈ mod(Ĉ ).
Applying (2) we can show that

Ĉ (−,MN)
Ĉ (−,αN )−−−−−→ Ĉ (−,N)

ϕ̃−→ Č (ϕ(−), ϕ(N))→ 0,

where ϕ̃ is natural transformation of functors (ϕ̃X (f ) = ϕ(f )), is
exact.
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6. Krull-Gabriel dimension of cluster repetitive category

Corollary.
KG(Č ) ≤ KG(Ĉ )

� Λϕ : F(Č)→F(Ĉ) (composition (−) ◦ ϕ) is exact and faithful.

Theorem 2. (� -Pastuszak'22)
KG(C̃) = KG(Č) = KG(Ĉ) ∈ {0, 2,∞}, for any tilted algebra C , and the
following assertions hold:

(1) C is tilted of Dynkin type if and only if KG(C̃) = 0.

(2) C is tilted of Euclidean type if and only if KG(C̃) = 2.

(3) C is tilted of wild type if and only if KG(C̃) = ∞.

In particular, Prest conjecture is valid for cluster-tilted algebras.

� C of Euclidean type ⇒ KG(C̃) = KG(Č) ≤ KG(Ĉ) = 2, but KG(C̃) ̸= 0, 1

� C either of Dynkin, or of Euclidean or of wild type - equivalences
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6. Krull-Gabriel dimension of cluster repetitive category

Theorem. (Bobi«ski'22)
If H = KQ is a hereditary algebra and C̃ is a cluster-tilted algebra of type
Q, then KG(C̃ ) = KG(H).

� (Geigle'86): C be a category such that F(C) is abelian and B be a full
subcategory of C with only �nitely many indecomposable objects up to
isomorphism, SX ∈ F(C) for each X ∈ B:

KG(C) = KG(C/[B])

� KG(C̃) = KG(CQ) and KG(H) = KG(CQ)
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7. Some generalization and its applications.

Assume F : R→A is a Galois covering.

(1) Recall that if R is lsf, then Fλ : mod(R)→mod(A) is dense and

F•(mod(A)) ⊆ Add(mod(R)).

Hence we may de�ne T̂ : Add(mod(R))→Mod(K ) (additive

closure of T ) and set Φ(T ) := T̂ ◦ F•.

(2) If R is arbitrary (and thus Fλ may not be dense), the construction of
Φ : F(R)→F(A) such that

Φ(CokerR(−, f )) = CokerA(−,Fλ(f ))

is as follows.
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7. Some generalization and its applications.

Assume C is locally bounded and let H(C ) be the morphism category

of C , that is:

� objects of H(C ) are homomorphisms in mod(C ).

� morphisms in H(C ) are pairs (a, b) : f → f ′ of homomorphisms in
mod(C ) such that the following diagram commutes:

M
f //

a

��

N

b
��

M ′ f ′ // N ′
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7. Some generalization and its applications.

De�ne the functor
CkC : H(C )→F(C )

as f 7→ CokerC (−, f ) (on objects). Properties:

� CkC is full and dense.

� The kernel KC := Ker(CkC ) is formed by null-homotopic

morphisms, that is, morphisms (a, b) : f → f ′ for which there is
s : N→M ′ with b = f ′s:

M
f //

a

��

N

s

wwp p p p p p p

b
��

M ′ f ′ // N ′

� We obtain H(C )/KC
∼= F(C ).
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7. Some generalization and its applications.

De�ne the functor
FH
λ : H(R)→H(A)

as f 7→ Fλ(f ) (on objects). Properties:

� easy to see that FH
λ (KR) ⊆ KA, so FH

λ induces

Φ : F(R) ∼= H(R)/KR →H(A)/KA
∼= F(A)

such that Φ(CokerR(−, f )) = CokerA(−,Fλ(f )):

H(R)
CkR //

FH
λ

��

F(R)

Φ

���
�
�

H(A)
CkA // F(A)

� Φ exact, because FH
λ is exact; one can show that Φ is faithful.

Theorem. (� -Pastuszak'23)
Assume F : R→A is a Galois covering. Then KG(R) ≤ KG(A).
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7. Some generalization and its applications.

Remark
If Fλ is dense and G torsion-free, then Pastuszak proved that
Φ : F(R)→F(A) is a Galois precovering of functor categories, that is:

� G acts freely on F(R) as (gT )(X ) = T (g
−1

X ).

� There are natural isomorphisms of vector spaces⊕
g∈G

F(R)(gT1,T2)→F(A)(Φ(T1),Φ(T2)).

� We have Φ(T ) ∼= Φ(gT ) and Φ(T1) ∼= Φ(T2) implies T1
∼= hT2, for

some h ∈ G , if T1,T2 have local endomorphism rings.

Remark.
(1) The above theorem can be viewed as some instance of general

results of Asashiba from A generalization of Gabriel's Galois covering

functors and derived equivalences (obtained independently).

(2) For arbitrary F : R→A and G , the functor Φ : F(R)→F(A) is not
a Galois precovering.
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7. Some generalization and its applications.

Let T be triangulation of a surface S , T⃗ an orientation of triangles,
(Q, f ) = (Q(S , T⃗ ), f ) the associated triangulation quiver, m•, c• weight
and parameter functions on (Q, f ).

Weighted surface algebra Λ = Λ(S , T⃗ ,m•, c•) = KQ/I , where (Q, f ) is
a triangulation quiver, generators of I depend on permutation f .
Exceptional families: disc algebras D(λ), tetrahedral algebras Λ(λ),
triangle algebras T (λ), spherical algebras S(λ) for any λ ∈ K∗.

Theorem (Erdmann-Skowro«ski'20)

(1) Weighted surface algebras Λ not isomorphic to D(λ), Λ(λ), T (λ),
S(λ) are tame of non-polynomial growth.

(2) For Λ not isomorphic to D(λ), Λ(λ), T (λ), S(λ), D(λ)(1), D(λ)(2),
there exists a quotient algebra Γ = Λ/L of Λ which is a string
algebra of non-polynomial growth.

Observe that in (2) there is modΓ→modΛ - faithful, exact ⇒
KG(Γ) ≤ KG(Λ). Hence KG(Λ) = ∞.
For D(λ)(1), D(λ)(2) we also have KG(Λ) = ∞.
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7. Some generalization and its applications.

If λ ̸= 1 then D(λ), Λ(λ), T (λ), S(λ) are of polynomial growth and:

� tetrahedral algebras Λ(λ) ∼= T (B(λ)) for B(λ) tubular algebra of
type (2, 2, 2, 2),

� disc algebras D(λ) = Λ(λ)/Z3,

� spherical algebras S(λ)) ∼= T (C (λ)) for C (λ) tubular algebra of type
(2, 2, 2, 2),

� triangle algebras T (λ) ∼= S(λ)/Z2.

By applying new theorem in this case also KG(Λ) = ∞.

Theorem. (� -Pastuszak'23)
Periodic weighted surface algebras Λ have KG(Λ) = ∞.
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