On Krull-Gabriel dimension of cluster repetitive categories and cluster-tilted algebras

Alicja Jaworska-Pastuszak Nicolaus Copernicus University in Toruń

FD Seminar, 23.02.2023

- 1. Basic definitions and notation.
- 2. The motivation and some results.
- 3. Short reminder on Galois coverings.
- 4. Galois coverings preserving Krull-Gabriel dimension.
- 5. Krull-Gabriel dimension of locally support-finite repetitive categories.
- 6. Krull-Gabriel dimension of cluster repetitive categories.
- 7. Some generalization and its applications.

1. Basic definitions

- $K = \overline{K}$
- *R* is a **locally bounded** *K***-category**, that is, *R* is isomorphic with a bound quiver *K*-category of some locally finite quiver.
- Finite locally bounded *K*-categories are identified with bound quiver *K*-algebras.
- MOD(R) is the category of right R-modules, that is, K-linear contravariant functors M : R → MOD(K).
- Mod(R) is the category of locally finite dimensional R-modules, that is, M ∈ Mod(R) iff

$$\forall_{x\in \mathrm{ob}(R)} \dim_{K} M(x) < \infty.$$

• mod(R) is the full subcategory of **finite dimensional** *R*-modules, that is, $M \in mod(R)$ iff

$$\dim M = \sum_{x \in \operatorname{ob}(R)} \dim_{K} M(x) < \infty.$$

- $\mathcal{G}(R)$ is the category of contravariant K-linear functors $\operatorname{mod}(R) \to \operatorname{mod}(K)$.
- $\mathcal{F}(R)$ is the full subcategory of $\mathcal{G}(R)$ formed by **finitely presented functors**, that is, functors $T \in \mathcal{G}(R)$ such that there is an exact sequence of functors

$$_{R}(-,M) \stackrel{R(-,f)}{\longrightarrow} _{R}(-,N) \rightarrow T \rightarrow 0,$$

for some $M, N, f : M \to N \in \text{mod}(R)$. Then $T \cong \text{Coker}_R(-, f)$.

• Categories $\mathcal{G}(R), \mathcal{F}(R)$ are abelian.

2. The motivation and some results

Assume C is a skeletally small abelian category.

- The Krull-Gabriel filtration (C_α)_α of C is a filtration of C by Serre subcategories defined recursively as follows:
 - (1) $C_{-1} = 0$ and $C_{\alpha+1}$ is the Serre subcategory of C formed by all objects of C having finite length in the Serre quotient category C/C_{α} , for any ordinal number α ,

(2)
$$C_{\beta} = \bigcup_{\alpha < \beta} C_{\alpha}$$
, for any limit ordinal β .

- The Krull-Gabriel dimension KG(C) of C is the smallest ordinal number α such that C_α = C, if it exists. Otherwise, set KG(C) = ∞.
- If $KG(C) = n \in \mathbb{N}$, then the Krull-Gabriel dimension of C is **finite**. If $KG(C) = \infty$, then the Krull-Gabriel dimension of C is **undefined**.
- We set $KG(R) := KG(\mathcal{F}(R))$.

Motivation: The conjecture of Prest.

An algebra A is of domestic representation type if and only if KG(A) is finite.

2. The motivation and some results

All known results support the conjecture of Prest. In particular:

- A is of finite representation type if and only if KG(A) = 0 (Auslander'82).
- $KG(A) \neq 1$ (Krause'98).
- If A is hereditary of Euclidean type, then KG(A) = 2 (Geigle'86).
- KG(A) = ∞ for the following classes of algebras: wild (Prest'88), tubular (Geigle'86), string of non-domestic type (Schröer'00), pg-critical (Kasjan-Pastuszak'14).
- If A is a string algebra of domestic type, then KG(A) is finite (Laking-Prest-Puninski'16).
- A is strongly simply connected: A is of domestic type if and only if KG(A) is finite (Wenderlich'96).
- A is generalized multicoil algebra: A is of domestic type if and only if KG(A) is finite (Malicki'15).
- A is a cycle-finite algebra of infinite representation type: A is domestic if and only if KG(A) is finite (Skowroński'16).

2. The motivation and some results

A locally bounded K-category R is cycle-finite, if for any cycle

$$M_0 \stackrel{f_1}{\rightarrow} M_1 \rightarrow \ldots \rightarrow M_{r-1} \stackrel{f_r}{\rightarrow} M_r = M_0$$

of non-zero non-isomorphisms in $\operatorname{ind}(R)$, we have $f_1, \ldots, f_r \notin \operatorname{rad}_R^{\infty}$.

Question (Skowroński'16).

Is it possible to apply the result for cycle-finite algebras in the study of Krull-Gabriel dimension of standard selfinjective algebras of infinite representation type?

These algebras have "nice" Galois coverings (by a cycle-finite categories). Do they preserve KG dimension?

Theorem (Pastuszak'19).

Assume R is a locally support-finite locally bounded K-category, G is a torsion-free admissible group of K-linear automorphisms of R. Assume that A = R/G is the orbit category and $F : R \to A$ the associated Galois covering. Then KG(R) = KG(A).

3. Short reminder on Galois coverings

Let R, A be locally bounded K-categories, G a group of K-linear automorphisms of R acting freely on ob(R) (that is gx = x if and only if g = 1, for any $g \in G$, $x \in ob(R)$). Then a K-linear functor $F : R \to A$ is a **Galois covering**, if:

• $F: R \rightarrow A$ induces isomorpisms

$$\bigoplus_{g \in G} R(gx, y) \cong A(F(x), F(y)) \cong \bigoplus_{g \in G} R(x, gy)$$

of vector spaces, for any $x, y \in ob(R)$,

- $F: R \to A$ induces a surjective function $ob(R) \to ob(A)$,
- Fg = F, for any $g \in G$,
- for any $x, y \in ob(R)$ such that F(x) = F(y) there is $g \in G$ with gx = y.

In the above case, the functor F induces an isomorphism $A \cong R/G$ where R/G is the **orbit category**.

Assume R is a locally bounded K-category, G is a group of K-linear automorphisms of R acting freely on ob(R) and $F : R \to A \cong R/G$ the associated Galois covering. Then:

- The pull-up functor F_{\bullet} : MOD(A) \rightarrow MOD(R) is the exact functor $(-) \circ F^{op}$.
- *F*_• has the left adjoint *F*_λ : MOD(*R*) → MOD(*A*) and the right adjoint *F*_ρ : MOD(*R*) → MOD(*A*) which are the **push-down** functors.
- Assume $M \in MOD(R)$, $a \in ob(A)$ and a = F(x), for $x \in ob(R)$. Then $F_{\lambda}(M)(a) = \bigoplus_{g \in G} M(gx)$ and $F_{\rho}(M)(a) = \prod_{g \in G} M(gx)$. Note that $F_{\lambda}(mod(R)) \subseteq mod(A)$ and $F_{\lambda}|_{mod(R)} = F_{\rho}|_{mod(R)}$.
- The group G acts on mod(R) as ^gM := M ∘ g⁻¹ and on homomorphisms in a natural way.
- If G is torsion-free, then it acts freely on ind(R), that is, ${}^{g}N \cong N$ yields g = 1, for any $N \in ind(R)$.

Let R be locally bounded K-category.

- For M ∈ MOD(R), the support supp(M) of M is the full subcategory of R formed by all objects x in R such that M(x) ≠ 0.
- The category R is **locally support-finite**, if for any object x of R the union of the sets supp(N), where $N \in ind(R)$ and $N(x) \neq 0$, is finite.

Theorem.

Assume R is a locally support-finite K-category, G an admissible torsion-free group of K-linear automorphisms of R and $F : R \to A$ the Galois covering. Then the functor $F_{\lambda} : \operatorname{mod}(R) \to \operatorname{mod}(A)$ is a Galois covering of module categories, that is,

$$\operatorname{mod}(R)/G \cong \operatorname{mod}(A).$$

In particular: F_{λ} is dense, preserves indecomposable modules and Auslander-Reiten sequences.

4. Galois coverings preserving Krull-Gabriel dimension

The proof that KG(R) = KG(A) is based on the general facts: Fact 1.

Assume \mathcal{C}, \mathcal{D} are abelian categories and $F : \mathcal{C} \rightarrow \mathcal{D}$ is an exact functor.

- (1) If F is full and dense, then $KG(\mathcal{D}) \leq KG(\mathcal{C})$.
- (2) If F is faithful, then $KG(C) \leq KG(D)$.

Fact 2.

Assume R is locally support-finite locally bounded K-category and G is an admissible group of K-linear automorphisms of R. There is a finite convex subcategory B_R of R, the **fundamental domain** of R, such that for any $M \in ind(R)$ there is $g \in G$ with $supp({}^gM) \subseteq B_R$.

The sketch of the proof of (Pastuszak'19).

Recall that $F: R \to A$ is a Galois covering with R-lsf, G- torsion-free. We define two exact functors

$$\Phi: \mathcal{F}(R) \rightarrow \mathcal{F}(A) \text{ and } \Lambda: \mathcal{F}(A) \rightarrow \mathcal{F}(B_R),$$

and use Fact 1.

4. Galois coverings preserving Krull-Gabriel dimension

Assume $T \in \mathcal{F}(R)$, then $T = \operatorname{Coker}_{R}(-, f)$, for $f : M \to N$ in $\operatorname{mod}(R)$.

$$R \text{ is } \text{lsf: } \text{Ind}(R) = \text{ind}(R) \Rightarrow$$

$$F_{\bullet}(\text{mod}(A)) \subseteq \text{Add}(\text{mod}(R))$$

$$T \longmapsto \hat{T} : \text{Add}(\text{mod}(R)) \rightarrow \text{MOD}(K) - \text{additive closure of } T$$

$$(\hat{T}(\oplus M_i) = \oplus T(M_i))$$
Define $\Phi : \mathcal{F}(R) \rightarrow \mathcal{G}(A)$ as $\Phi(T) = \hat{T} \circ F_{\bullet}$. It can be shown that
$$\Phi(T) = \hat{T} \circ F_{\bullet} = \text{Coker}_{A}(F_{\bullet}(-), f) \cong \text{Coker}_{A}(-, F_{\lambda}f) \in \mathcal{F}(A)$$

since (F_{\bullet}, F_{ρ}) is an adjoint pair and $F_{\lambda} = F_{\rho}$ on mod(R).

- Φ is well-defined (does not depend on the presentation of T) and exact (as a composition).
- Φ is faithful $(F_{\lambda} \text{ is dense and } F_{\bullet}(F_{\lambda}(M)) \cong \bigoplus_{g \in G} {}^{g}M).$
- Hence we obtain $KG(R) \leq KG(A)$.

Assume $U \in \mathcal{F}(A)$ and $\mathcal{E} : \operatorname{mod}(B_R) \to \operatorname{mod}(R)$ is the extension by zeros.

- \mathcal{E} is exact, full and faithful, hence $KG(B_R) \leq KG(R)$.
- It can be shown that Λ is well-defined $(U \circ F_{\lambda} \circ \mathcal{E} \in \mathcal{F}(B_R))$.
- $F_{\lambda} \circ \mathcal{E}$ is dense (since B_R is a fundamental domain),
- Λ is exact and faithful (as a composition with a dense functor).
- Hence we obtain $KG(A) \leq KG(B_R) \leq KG(R)$.

Conclusion. $KG(R) = KG(B_R) = KG(A)$

5. Krull-Gabriel dimension of repetitive category

A a finite dimensional K-algebra, $D(A) = \operatorname{Hom}_{K}(A, K)$ - A-A-bimodule

- It is locally fin. dim. K-algebra (locally bounded K-category), A_i = A and D(A)_i = D(A), and there are only finitely many non-zero entries.
- Identity maps $A_i \to A_{i-1}$, $D(A)_i \to D(A)_{i-1}$ induce an automorphism $\nu : \widehat{A} \to \widehat{A}$.
- There is a Galois covering $G : \widehat{A} \to \widehat{A}/\langle \nu \rangle = T(A)$, where $T(A) \cong A \ltimes D(A)$ is a trivial extension algebra.

Theorem. (Assem-Skowroński'93)

The repetitive category \widehat{A} of algebra A is lsf and tame if and only if $\widehat{A} \cong \widehat{B}$ where B is tilted algebra of Dynkin or Euclidean type, or tubular algebra.

5. Krull-Gabriel dimension of repetitive category

Corollary 1. (Pastuszak'19)

Let A be an algebra such that \widehat{A} is lsf. Then $\mathsf{KG}(\widehat{A}) \in \{0,2,\infty\}$ and:

- (a) $KG(\widehat{A}) = 0$ if and only if $\widehat{A} \cong \widehat{B}$ for B tilted of Dynkin type;
- (b) $KG(\widehat{A}) = 2$ if and only if $\widehat{A} \cong \widehat{B}$ for B tilted of Euclidean type;
- (c) $KG(\widehat{A}) = \infty$ if and only if \widehat{A} is wild or $\widehat{A} \cong \widehat{B}$ for B tubular.
 - B- Euclidean type $\Rightarrow \widehat{B}$ cycle finite of domestic type \Rightarrow fund. domain C cycle finite of domestic type $\Rightarrow KG(\widehat{B}) = KG(C) = 2$
 - B tubular $\Rightarrow B \subset \widehat{B}$ convex $\Rightarrow \mathsf{KG}(B) \leq \mathsf{KG}(\widehat{B}) \Rightarrow \mathsf{KG}(\widehat{B}) = \infty$

Corollary 2. (Pastuszak'19)

A standard selfinjective algebra of infinite type

- (a) if A domestic then KG(A) = 2;
- (b) if A nondomestic of polynomial growth then $KG(A) = \infty$.

•
$$A \cong \widehat{B}/G$$
, $G \cong \mathbb{Z}$, \widehat{B} - cycle-finite, tame and lsf:
 B - tilted Euclidean $\Rightarrow \operatorname{KG}(A) = \operatorname{KG}(\widehat{B}) = 2$
 B - tubular $\Rightarrow \operatorname{KG}(A) = \operatorname{KG}(\widehat{B}) = \infty$

6. Krull-Gabriel dimension of cluster repetitive category

C tilted algebra, $E = \operatorname{Ext}^2_C(DC, C)$ - C-C-bimodule

$$\check{C} = \begin{bmatrix} & & & & & & & \\ & & C_{-1} & & & & \\ & & E_0 & C_0 & & & \\ & & & E_1 & C_1 & & \\ & & & & & \end{bmatrix} - \text{cluster repetitive category of } C$$

Identity maps $C_i \to C_{i-1}$, $E_i \to E_{i-1}$ induce an automorphism $\nu : \check{C} \to \check{C}$ and we have a Galois covering $G : \check{C} \to \check{C}/\langle \nu \rangle = \tilde{C}$

 $ilde{\mathcal{C}}\cong \mathcal{C}\ltimes \operatorname{Ext}^2_{\mathcal{C}}(\mathcal{DC},\mathcal{C})$ relation extension algebra

 $\operatorname{End}_{\mathcal{C}_Q}(\mathcal{T})$ - cluster tilted algebra of type Q

Theorem. (Assem-Brüstle-Schiffler'08)

A is a cluster tilted algebra of type Q if and only if $A = \tilde{C}$ for tilted algebra C of type Q.

Proposition.

There exists a fundamental domain B of \check{C} and hence \check{C} is lsf and $KG(\check{C}) = KG(\widetilde{C})$.

- Assem-Brüstle-Schiffler defined a fundamental domain for push-down functor $G_{\lambda} : \mod(\check{C}) \to \mod{\tilde{C}}$.
- The cluster duplicated algebra $\begin{bmatrix} C_0 \\ E \end{bmatrix}$

$$\begin{bmatrix} 0 & 0 \\ C_1 \end{bmatrix}$$
 is a fund. domain of \check{C} .

Theorem. (Assem-Brüstle-Schiffler'08)

There exists an additive K-linear functor $\phi : \operatorname{mod}(\widehat{C}) \to \operatorname{mod}(\check{C})$ which is full, dense (and exact) such that $\operatorname{Ker}(\phi)$ equals the class of all homomorphisms in $\operatorname{mod}(\widehat{C})$ which factorize through $\operatorname{add}(\mathcal{K}_C)$, where

$$\mathcal{K}_{\mathcal{C}} = \{\widehat{\mathcal{P}}_x, \tau^{1-i}\Omega^{-i}(\mathcal{C}) \mid x \in (\widehat{\mathcal{C}})_0, i \in \mathbb{Z}\} \subset \operatorname{mod}(\widehat{\mathcal{C}}).$$

- \widehat{P}_x is an indecomposable projective $\widehat{C} ext{-module}$ at the vertex $x\in (\widehat{C})_0$
- $au= au_{\widehat{\mathcal{C}}}$ is the Auslander-Reiten translation in $\mathrm{mod}(\widehat{\mathcal{C}})$, Ω syzygy functor

Aim: $KG(\check{C}) \leq KG(\widehat{C})$

Theorem 1. (--Pastuszak'22)

- (1) \mathcal{K}_C is hom-support finite, that is for any $N \in mod(\widehat{C})$ there is only finitely many objects $X \in \mathcal{K}_C$ such that $_{\widehat{C}}(X, N) \neq 0$.
- (2) $\operatorname{add}(\mathcal{K}_C)$ is contravariantly finite class in $\operatorname{mod}(\widehat{C})$, that is for any $N \in \operatorname{mod}(\widehat{C})$ there exists $M_N \in \operatorname{add}(\mathcal{K}_C)$ and $\alpha_N : M_N \to N$ such that

$$_{\widehat{\mathcal{C}}}(*,M_{\mathcal{N}}) \xrightarrow{_{\widehat{\mathcal{C}}}(*,lpha_{\mathcal{N}})} _{\widehat{\mathcal{C}}}(*,\mathcal{N}) \!
ightarrow \! 0 \quad ext{ is exact for } * \in \mathrm{add}(\mathcal{K}_{\mathcal{C}}).$$

(3) The functor $\Lambda_{\phi} \colon \mathcal{F}(\check{C}) \to \mathcal{G}(\widehat{C})$ defined as the composition $(-) \circ \phi$ satisfies the condition $\operatorname{Im}(\Lambda_{\varphi}) \subseteq \mathcal{F}(\widehat{C})$.

Sketch of the proof:

(1)

$$\mathcal{K}_{\mathcal{C}} = \{\widehat{P}_{x}, \tau^{1-i}\Omega^{-i}(\mathcal{C}) \mid x \in (\widehat{\mathcal{C}})_{0}, i \in \mathbb{Z}\}$$

• C tilted of Euclidean or wild type Δ :

$$\Gamma_{\widehat{C}} = \bigvee_{q \in \mathbb{Z}} (\mathcal{X}_q \lor \mathcal{C}_q)$$

where $q \in \mathbb{Z}$, stable part \mathcal{X}_q^s is of the form $\mathbb{Z}\Delta C_q^s$ is a union either of stable tubes or of components of the form $\mathbb{Z}\mathbb{A}_{\infty}$

(2) Take
$$M_N = \bigoplus_{X \in \mathcal{K}_C} (\widehat{c}(X, N) \otimes_K X)$$
,
 $\alpha_N : M_N \to N, \ \alpha_N(f \otimes x) = f(x)$, for any $f \in {}_{\mathcal{A}}(X, N)$ and $x \in X$.

6. Krull-Gabriel dimension of cluster repetitive category

(3) Let $U \in \mathcal{F}(\check{C})$, hence

$$_{\check{\mathcal{C}}}(-,X) \xrightarrow{\check{\mathcal{C}}(-,f)} _{\check{\mathcal{C}}} (-,Y) \to U \to 0$$

is exact. Then $U\phi\in\mathcal{G}(\widehat{\mathcal{C}})$ and

$${}_{\check{\mathcal{C}}}(\phi(-),X) \xrightarrow{\check{\mathcal{C}}(\phi(-),f)} {\check{\mathcal{C}}}(\phi(-),Y) \to U\phi \to 0$$

is exact. It's enough to show ${}_{\check{\mathcal{C}}}(\phi(-),Z)\in \mathcal{F}(\widehat{\mathcal{C}})$ since $\mathcal{F}(\widehat{\mathcal{C}})$ is abelian.

Since ϕ is dense, $\check{c}(\phi(-), Z) = \check{c}(\phi(-), \phi(N))$ for some $N \in \text{mod}(\widehat{C})$. Applying (2) we can show that

$$_{\widehat{c}}(-,M_N) \xrightarrow{\hat{c}(-,\alpha_N)} _{\widehat{c}}(-,N) \xrightarrow{\widetilde{\phi}} _{\check{c}}(\phi(-),\phi(N)) \rightarrow 0,$$

where $\tilde{\phi}$ is natural transformation of functors ($\tilde{\phi}_X(f) = \phi(f)$), is exact.

Corollary. $KG(\check{C}) \leq KG(\widehat{C})$

• $\Lambda_{\phi} : \mathcal{F}(\check{C}) \to \mathcal{F}(\widehat{C})$ (composition $(-) \circ \phi$) is exact and faithful.

Theorem 2. (- - Pastuszak'22)

 $\operatorname{KG}(\widetilde{C}) = \operatorname{KG}(\check{C}) = \operatorname{KG}(\widehat{C}) \in \{0, 2, \infty\}$, for any tilted algebra C, and the following assertions hold:

- (1) C is tilted of Dynkin type if and only if $KG(\tilde{C}) = 0$.
- (2) C is tilted of Euclidean type if and only if $KG(\tilde{C}) = 2$.
- (3) C is tilted of wild type if and only if $KG(\tilde{C}) = \infty$.

In particular, Prest conjecture is valid for cluster-tilted algebras.

- C of Euclidean type $\Rightarrow \mathsf{KG}(\widetilde{C}) = \mathsf{KG}(\check{C}) \leq \mathsf{KG}(\widehat{C}) = 2$, but $\mathsf{KG}(\widetilde{C}) \neq 0, 1$
- C either of Dynkin, or of Euclidean or of wild type equivalences

Theorem. (Bobiński'22)

If H = KQ is a hereditary algebra and \widetilde{C} is a cluster-tilted algebra of type Q, then $KG(\widetilde{C}) = KG(H)$.

• (Geigle'86): C be a category such that $\mathcal{F}(C)$ is abelian and \mathcal{B} be a full subcategory of C with only finitely many indecomposable objects up to isomorphism, $S_X \in \mathcal{F}(C)$ for each $X \in \mathcal{B}$:

 $\mathsf{KG}(\mathcal{C})=\mathsf{KG}(\mathcal{C}/[\mathcal{B}])$

•
$$\operatorname{KG}(\widetilde{C}) = \operatorname{KG}(\mathcal{C}_Q)$$
 and $\operatorname{KG}(H) = \operatorname{KG}(\mathcal{C}_Q)$

Assume $F : R \rightarrow A$ is a Galois covering.

(1) Recall that if R is lsf, then $F_{\lambda} : \operatorname{mod}(R) \to \operatorname{mod}(A)$ is dense and

 $F_{\bullet}(\operatorname{mod}(A)) \subseteq \operatorname{Add}(\operatorname{mod}(R)).$

Hence we may define \widehat{T} : Add $(mod(R)) \rightarrow Mod(K)$ (additive closure of T) and set $\Phi(T) := \widehat{T} \circ F_{\bullet}$.

(2) If R is arbitrary (and thus F_{λ} may not be dense), the construction of $\Phi : \mathcal{F}(R) \to \mathcal{F}(A)$ such that

$$\Phi(\operatorname{Coker}_{R}(-,f)) = \operatorname{Coker}_{A}(-,F_{\lambda}(f))$$

is as follows.

Assume C is locally bounded and let $\mathcal{H}(C)$ be the **morphism category** of C, that is:

- objects of $\mathcal{H}(C)$ are homomorphisms in mod(C).
- morphisms in $\mathcal{H}(C)$ are pairs $(a, b) : f \to f'$ of homomorphisms in mod(C) such that the following diagram commutes:

Define the functor

$$\operatorname{Ck}_{\mathcal{C}}: \mathcal{H}(\mathcal{C}) \to \mathcal{F}(\mathcal{C})$$

as $f \mapsto \operatorname{Coker}_{\mathcal{C}}(-, f)$ (on objects). Properties:

- Ck_C is full and dense.
- The kernel K_C := Ker(Ck_C) is formed by null-homotopic morphisms, that is, morphisms (a, b) : f → f' for which there is s : N → M' with b = f's:

• We obtain
$$\mathcal{H}(C)/K_C \cong \mathcal{F}(C)$$
.

Define the functor

$$F_{\lambda}^{\mathcal{H}}:\mathcal{H}(R)\to\mathcal{H}(A)$$

as $f \mapsto F_{\lambda}(f)$ (on objects). Properties:

• easy to see that $F_{\lambda}^{\mathcal{H}}(K_R) \subseteq K_A$, so $F_{\lambda}^{\mathcal{H}}$ induces

 $\Phi: \mathcal{F}(R) \cong \mathcal{H}(R)/K_R \to \mathcal{H}(A)/K_A \cong \mathcal{F}(A)$

such that $\Phi(\operatorname{Coker}_R(-, f)) = \operatorname{Coker}_A(-, F_{\lambda}(f))$:

• Φ exact, because $F_{\lambda}^{\mathcal{H}}$ is exact; one can show that Φ is faithful. Theorem. (- -Pastuszak'23) Assume $F : R \to A$ is a Galois covering. Then $KG(R) \leq KG(A)$.

Remark

If F_{λ} is dense and G torsion-free, then Pastuszak proved that

 $\Phi:\mathcal{F}(R) \to \mathcal{F}(A)$ is a Galois precovering of functor categories, that is:

- G acts freely on $\mathcal{F}(R)$ as $(gT)(X) = T(g^{g^{-1}}X)$.
- There are natural isomorphisms of vector spaces

$$\bigoplus_{g\in G} \mathcal{F}(R)(gT_1, T_2) \to \mathcal{F}(A)(\Phi(T_1), \Phi(T_2)).$$

 We have Φ(T) ≅ Φ(gT) and Φ(T₁) ≅ Φ(T₂) implies T₁ ≅ hT₂, for some h ∈ G, if T₁, T₂ have local endomorphism rings.

Remark.

- (1) The above theorem can be viewed as some instance of general results of Asashiba from *A generalization of Gabriel's Galois covering functors and derived equivalences* (obtained independently).
- (2) For arbitrary $F : R \to A$ and G, the functor $\Phi : \mathcal{F}(R) \to \mathcal{F}(A)$ is not a Galois precovering.

Let T be triangulation of a surface S, \vec{T} an orientation of triangles, $(Q, f) = (Q(S, \vec{T}), f)$ the associated triangulation quiver, m_{\bullet}, c_{\bullet} weight and parameter functions on (Q, f). Weighted surface algebra $\Lambda = \Lambda(S, \vec{T}, m_{\bullet}, c_{\bullet}) = KQ/I$, where (Q, f) is a triangulation quiver, generators of I depend on permutation f. Exceptional families: disc algebras $D(\lambda)$, tetrahedral algebras $\Lambda(\lambda)$, triangle algebras $T(\lambda)$, spherical algebras $S(\lambda)$ for any $\lambda \in K^*$.

Theorem (Erdmann-Skowroński'20)

- (1) Weighted surface algebras Λ not isomorphic to $D(\lambda)$, $\Lambda(\lambda)$, $T(\lambda)$, $S(\lambda)$ are tame of non-polynomial growth.
- (2) For Λ not isomorphic to $D(\lambda)$, $\Lambda(\lambda)$, $T(\lambda)$, $S(\lambda)$, $D(\lambda)^{(1)}$, $D(\lambda)^{(2)}$, there exists a quotient algebra $\Gamma = \Lambda/L$ of Λ which is a string algebra of non-polynomial growth.

Observe that in (2) there is $\operatorname{mod}\Gamma \to \operatorname{mod}\Lambda$ - faithful, exact \Rightarrow KG(Γ) \leq KG(Λ). Hence KG(Λ) = ∞ . For $D(\lambda)^{(1)}$, $D(\lambda)^{(2)}$ we also have KG(Λ) = ∞ .

If $\lambda \neq 1$ then $D(\lambda)$, $\Lambda(\lambda)$, $T(\lambda)$, $S(\lambda)$ are of polynomial growth and:

- tetrahedral algebras Λ(λ) ≅ T(B(λ)) for B(λ) tubular algebra of type (2, 2, 2, 2),
- disc algebras $D(\lambda) = \Lambda(\lambda)/\mathbb{Z}_3$,
- spherical algebras $S(\lambda) \cong T(C(\lambda))$ for $C(\lambda)$ tubular algebra of type (2,2,2,2),
- triangle algebras $T(\lambda) \cong S(\lambda)/\mathbb{Z}_2$.

By applying new theorem in this case also $KG(\Lambda) = \infty$.

Theorem. (--Pastuszak'23)

Periodic weighted surface algebras Λ have $KG(\Lambda) = \infty$.