n-cluster tilting subcategories for truncated path

 algebrasLaertis Vaso

- NTNU

Institutt for matematiske fag
Joint work in progress with Steffen Oppermann (NTNU)
FD Seminar 19 January 2023

Introduction

\mathbf{k} - a field.

Introduction

\mathbf{k} - a field.
Λ - a finite-dimensional \mathbf{k}-algebra.

Introduction

\mathbf{k} — a field.
Λ - a finite-dimensional k-algebra.
$\bmod \Lambda —$ category of finitely generated right Λ-modules.

Introduction

Definition [lyama]

A functorially finite subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called an n-cluster tilting (CT) subcategory if

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

If $\mathcal{C}=\operatorname{add}(M)$ for some $M \in \bmod \Lambda$, then we call M an n-cluster tilting module.

Introduction

Definition [lyama]

A functorially finite subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called an n-cluster tilting (CT) subcategory if

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

If $\mathcal{C}=\operatorname{add}(M)$ for some $M \in \bmod \Lambda$, then we call M an n-cluster tilting module.

- If $M \in \bmod \Lambda$, then $\operatorname{add}(M)$ is functorially finite.

Introduction

Definition [lyama]

A functorially finite subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called an n-cluster tilting (CT) subcategory if

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

If $\mathcal{C}=\operatorname{add}(M)$ for some $M \in \bmod \Lambda$, then we call M an n-cluster tilting module.

- If $M \in \bmod \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C}=\bmod \Lambda$ is the unique 1 -cluster tilting subcategory.

Introduction

Definition [lyama]

A functorially finite subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called an n-cluster tilting (CT) subcategory if

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

If $\mathcal{C}=\operatorname{add}(M)$ for some $M \in \bmod \Lambda$, then we call M an n-cluster tilting module.

- If $M \in \bmod \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C}=\bmod \Lambda$ is the unique 1 -cluster tilting subcategory.
- \exists 1-cluster tilting module $M \Longleftrightarrow \bmod \Lambda=\operatorname{add}(M)$
$\Longleftrightarrow \Lambda$ is representation-finite.

Introduction

Definition [lyama]

A functorially finite subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called an n-cluster tilting (CT) subcategory if

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

If $\mathcal{C}=\operatorname{add}(M)$ for some $M \in \bmod \Lambda$, then we call M an n-cluster tilting module.

- If $M \in \bmod \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C}=\bmod \Lambda$ is the unique 1 -cluster tilting subcategory.
- \exists 1-cluster tilting module $M \Longleftrightarrow \bmod \Lambda=\operatorname{add}(M)$
$\Longleftrightarrow \Lambda$ is representation-finite.
- $n \leq$ gl. $\operatorname{dim} .(\Lambda)$.

Introduction

We denote by $\tau_{n}:=\tau \Omega^{n-1}$ and $\tau_{n}^{-}:=\tau^{-} \Omega^{-(n-1)}$ the n-Auslander-Reiten translations.

Introduction

We denote by $\tau_{n}:=\tau \Omega^{n-1}$ and $\tau_{n}^{-}:=\tau^{-} \Omega^{-(n-1)}$ the n-Auslander-Reiten translations.
For a subcategory $\mathcal{C} \subseteq \bmod \Lambda$ we set
$\mathcal{C}_{\mathcal{P}}:=\{$ isoclasses of indecomposable non projective Λ-modules in $\mathcal{C}\}$
$\mathcal{C}_{\mathcal{I}}:=\{$ isoclasses of indecomposable non injective Λ-modules in $\mathcal{C}\}$.

Introduction

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

Proposition [lyama, V]
Let $\mathcal{C} \subseteq \bmod \Lambda$ be $n-C T$. Then the following hold.

Introduction

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

Proposition [lyama, V]
Let $\mathcal{C} \subseteq \bmod \Lambda$ be $n-C T$. Then the following hold.
(a) \mathcal{C} contains all projective and all injective Λ-modules.

Introduction

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

Proposition [lyama, V]

Let $\mathcal{C} \subseteq \bmod \Lambda$ be $n-C T$. Then the following hold.
(a) \mathcal{C} contains all projective and all injective Λ-modules.
(b) $\tau_{n}: \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_{n}^{-}: \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.

Introduction

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

Proposition [lyama, V]

Let $\mathcal{C} \subseteq \bmod \Lambda$ be $n-C T$. Then the following hold.
(a) \mathcal{C} contains all projective and all injective Λ-modules.
(b) $\tau_{n}: \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_{n}^{-}: \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.
(c) Let $M \in \mathcal{C}_{\mathcal{P}}$. Then $\Omega^{i}(M)$ is indecomposable for $1 \leq i \leq n-1$.

Introduction

$$
\begin{aligned}
\mathcal{C} & =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(\mathcal{C}, X)=0 \text { for } 0<i<n\right\} \\
& =\left\{X \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(X, \mathcal{C})=0 \text { for } 0<i<n\right\} .
\end{aligned}
$$

Proposition [lyama, V]

Let $\mathcal{C} \subseteq \bmod \Lambda$ be $n-C T$. Then the following hold.
(a) \mathcal{C} contains all projective and all injective Λ-modules.
(b) $\tau_{n}: \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_{n}^{-}: \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.
(c) Let $M \in \mathcal{C}_{\mathcal{P}}$. Then $\Omega^{i}(M)$ is indecomposable for $1 \leq i \leq n-1$.
(d) Let $M \in \mathcal{C}_{\mathcal{I}}$. Then $\Omega^{-i}(M)$ is indecomposable for $1 \leq i \leq n-1$.

Introduction

Examples where n-cluster tilting subcategories exist:

- tensor products of l-homogeneous n-representation-finite algebras (if \mathbf{k} is perfect) [Herschend-lyama]
- n-APR tilts of n-representation-finite algebras [lyama-Oppermann]
- higher Nakayama algebras [Jasso-Külshammer]
- many more...

Main question

From now on:

Main question

From now on:

- Q is a (connected, finite) quiver,

Main question

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k} Q$,

Main question

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k} Q$,
- $L \geq 2$ is an integer,

Main question

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k} Q$,
- $L \geq 2$ is an integer,
- $n \geq 2$ is an integer,

Main question

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k} Q$,
- $L \geq 2$ is an integer,
- $n \geq 2$ is an integer,
- $\Lambda=\mathbf{k} Q / J^{L}$ (truncated path algebra).

Main question

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k} Q$,
- $L \geq 2$ is an integer,
- $n \geq 2$ is an integer,
- $\Lambda=\mathbf{k} Q / J^{L}$ (truncated path algebra).

Question

For which Q, L and n does there exist an n-CT subcategory/module of $\bmod \Lambda$?

The quivers A_{m} and \tilde{A}_{m}

$$
A_{m}:=1 \stackrel{\alpha_{1}}{\longrightarrow} 2 \stackrel{\alpha_{2}}{\longrightarrow} \stackrel{\alpha_{m-1}}{\longrightarrow} m
$$

Known cases

The answer is known in the following cases:

Known cases

The answer is known in the following cases:

- $\Lambda=\mathbf{k} A_{m} / J^{L}[L=2$ Jasso, $L \geq 3 \mathrm{~V}]$,

Known cases

The answer is known in the following cases:

- $\Lambda=\mathbf{k} A_{m} / J^{L}[L=2$ Jasso, $L \geq 3 \mathrm{~V}]$,
- $\Lambda=\mathbf{k} \tilde{A}_{m} / J^{L}$ [Darpö-lyama],

Known cases

The answer is known in the following cases:

- $\Lambda=\mathbf{k} A_{m} / J^{L}[L=2$ Jasso, $L \geq 3 \mathrm{~V}]$,
- $\Lambda=\mathbf{k} \tilde{A}_{m} / J^{L}$ [Darpö-lyama],
- $\Lambda=\mathbf{k} Q / J^{L}$ and $n=$ gl. dim.(Λ) [Sand $\varnothing \mathrm{y}$-Thibault],

Known cases

The answer is known in the following cases:

- $\Lambda=\mathbf{k} A_{m} / J^{L}[L=2$ Jasso, $L \geq 3 \mathrm{~V}]$,
- $\Lambda=\mathbf{k} \tilde{A}_{m} / J^{L}$ [Darpö-lyama],
- $\Lambda=\mathbf{k} Q / J^{L}$ and $n=$ gl. dim.(Λ) [Sand $\varnothing \mathrm{y}$-Thibault],
- $\Lambda=\mathbf{k} Q / J^{2}[\mathrm{~V}]$.

$L=2$ and $L \geq 3$

Example for $L \geq 3$

The Auslander-Reiten quiver of $\mathbf{k} A_{9} / J^{3}$ is

$L=2$ and $L \geq 3$

Example for $L \geq 3$

The Auslander-Reiten quiver of $\mathbf{k} A_{9} / J^{3}$ is

and the additive closure of the encircled modules is a 2 -CT subcategory.

$L=2$ and $L \geq 3$

Example for $L \geq 3$

The Auslander-Reiten quiver of $\mathbf{k} A_{9} / J^{3}$ is

and the additive closure of the encircled modules is a 2 -CT subcategory.
In general, if $Q=A_{m}$ and $L \geq 3$, and if there exists an n-CT subcategory, then n is even.

$L=2$ and $L \geq 3$

Example for $L=2$

The Auslander-Reiten quiver of $\mathbf{k} A_{7} / J^{2}$ is

and there exist

$L=2$ and $L \geq 3$

Example for $L=2$

The Auslander-Reiten quiver of $\mathbf{k} A_{7} / J^{2}$ is

and there exist

$L=2$ and $L \geq 3$

Example for $L=2$

The Auslander-Reiten quiver of $\mathbf{k} A_{7} / J^{2}$ is

and there exist

$L=2$ and $L \geq 3$

Example for $L=2$

The Auslander-Reiten quiver of $\mathbf{k} A_{7} / J^{2}$ is

and there exist

$L=2$ and $L \geq 3$

Example for $L=2$

The Auslander-Reiten quiver of $\mathbf{k} A_{7} / J^{2}$ is

and there exist

In general, if $L=2$, there is no restriction on the parity of n.

Answer for any Q, L, n

Answer for any Q, L, n

Two ingredients:

Answer for any Q, L, n

Two ingredients:

- the shape of Q, and

Answer for any Q, L, n

Two ingredients:

- the shape of Q, and
- the length of certain paths in Q.

Answer for any Q, L, n

Two ingredients:

- the shape of Q, and
- the length of certain paths in Q.

Remark

The case $Q=\tilde{A}_{m}$ and the case $L=2$ are special.

Answer for any Q, L, n

Two ingredients:

- the shape of Q, and
- the length of certain paths in Q.

Remark

The case $Q=\tilde{A}_{m}$ and the case $L=2$ are special.

Theorem [Darpö-lyama]

Let $\Lambda=\mathbf{k} \tilde{A}_{m} / J^{L}$. There exists an n-CT subcategory of $\bmod \Lambda$ if and only if one of the following two conditions holds:
(i) $\left.\left(2\left(\frac{n-1}{2} L+1\right)\right) \right\rvert\, 2(m+1)$, or
(ii) $\left.\left(2\left(\frac{n-1}{2} L+1\right)\right) \right\rvert\, t(m+1)$, where $t=\operatorname{gcd}(n+1,2(L-1))$.

There are many different n-CT subcategories, all of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$.

Shape of Q

For a vertex v in Q we denote

- $\delta^{-}(v)$:=number of arrows terminating at v (incoming degree)
- $\delta^{+}(v):=$ number of arrows starting at v (outgoing degree)
- $\delta(v):=\left(\delta^{-}(v), \delta^{+}(v)\right)$ (degree)

Shape of Q

Proposition [Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. Then for every $v \in Q_{0}$ we have

$$
\delta(v) \in\{(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2)\} .
$$

Moreover, if $L \geq 3$ or $n \geq 3$, then $\delta(v) \neq(2,2)$.

Shape of Q

Proposition [Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. Then for every $v \in Q_{0}$ we have

$$
\delta(v) \in\{(0,0),(0,1),(1,0),(1,1),(1,2),(2,1),(2,2)\} .
$$

Moreover, if $L \geq 3$ or $n \geq 3$, then $\delta(v) \neq(2,2)$.

Proof sketch

Assume that there are at least 3 arrows terminating at v. Show that $\Omega(I(v))$ has at least two indecomposable summands using results of Huisgen-Zimmermann.

Shape of Q

Definition

Let Q be a quiver, let $n \geq 2$ and let $L \geq 2$. We say that Q is (n, L)-pre-admissible if
(i) every vertex of Q has at most two incoming and at most two outgoing arrows,
(ii) no vertex of Q has degree $(0,2)$ or $(2,0)$, and
(iii) if $L \geq 3$ or $n \geq 3$, then no vertex of Q has degree $(2,2)$.

Flow paths

Definition

Let $k \geq 2$. A k-flow path \mathbf{v} in Q is a path

$$
\mathbf{v}=v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_{k}
$$

such that

- $\delta\left(v_{1}\right) \neq(1,1)$,
- $\delta\left(v_{k}\right) \neq(1,1)$, and
- $\delta\left(v_{i}\right)=(1,1)$ for all $1<i<k$.

We define the degree of \mathbf{v} to be $\delta(\mathbf{v})=\left(\delta^{-}(\mathbf{v}), \delta^{+}(\mathbf{v})\right):=\left(\delta^{-}\left(v_{1}\right), \delta^{+}\left(v_{k}\right)\right)$.

Flow paths

Definition

Let $k \geq 2$. A k-flow path \mathbf{v} in Q is a path

$$
\mathbf{v}=v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_{k}
$$

such that

- $\delta\left(v_{1}\right) \neq(1,1)$,
- $\delta\left(v_{k}\right) \neq(1,1)$, and
- $\delta\left(v_{i}\right)=(1,1)$ for all $1<i<k$.

We define the degree of \mathbf{v} to be $\delta(\mathbf{v})=\left(\delta^{-}(\mathbf{v}), \delta^{+}(\mathbf{v})\right):=\left(\delta^{-}\left(v_{1}\right), \delta^{+}\left(v_{k}\right)\right)$.
Note: if Q is (n, L)-pre-admissible, then there exists a k-flow path if and only if $Q \neq A_{1}$ and $Q \neq \tilde{A}_{m}$.

Length of flow paths

Let Q be (n, L)-pre-admissible and let \mathbf{v} be a k-flow path in Q. We define $r(\mathbf{v}, L)$ depending on the degrees of v_{1} and v_{2} as in the following table:

$\delta\left(v_{1}\right)$	$\delta\left(v_{k}\right)$	$(1,0)$	$(2,1)$	$(1,2)$
$(0,1)$	$\frac{L}{2}$	1	0	1
$(1,2)$	1	$2-\frac{L}{2}$	$1-\frac{L}{2}$	1
$(2,1)$	0	$1-\frac{L}{2}$	$-\frac{L}{2}$	0
$(2,2)$	1	1	0	1

Length of flow paths

Let Q be (n, L)-pre-admissible and let \mathbf{v} be a k-flow path in Q. We define $r(\mathbf{v}, L)$ depending on the degrees of v_{1} and v_{2} as in the following table:

$\delta\left(v_{1}\right)$	$\delta\left(v_{k}\right)$	$(1,0)$	$(2,1)$	$(1,2)$
$(0,1)$	$\frac{L}{2}$	1	0	1
$(1,2)$	1	$2-\frac{L}{2}$	$1-\frac{L}{2}$	1
$(2,1)$	0	$1-\frac{L}{2}$	$-\frac{L}{2}$	0
$(2,2)$	1	1	0	1

Example

Let \mathbf{v} be a k-flow path with $\delta\left(v_{1}\right)=(1,2)$ and $\delta\left(v_{k}\right)=(2,1)$. Then $r(\mathbf{v}, 4)=2-\frac{4}{2}=0$.

Length of flow paths

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and one of the following conditions holds:

Length of flow paths

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and one of the following conditions holds:
(i) $L=2$,

Length of flow paths

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and one of the following conditions holds:
(i) $L=2$,
(ii) $L \geq 3, n$ and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v})=(0,0)$,

Length of flow paths

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and one of the following conditions holds:
(i) $L=2$,
(ii) $L \geq 3, n$ and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v})=(0,0)$,
(iii) $L \geq 3, n$ and $p_{\mathbf{v}}$ are both even, $n+p_{\mathbf{v}}>2$ and $\delta(\mathbf{v}) \in\{(1,1),(1,2),(2,1),(2,2)\}$, or

Length of flow paths

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and one of the following conditions holds:
(i) $L=2$,
(ii) $L \geq 3, n$ and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v})=(0,0)$,
(iii) $L \geq 3, n$ and $p_{\mathbf{v}}$ are both even, $n+p_{\mathbf{v}}>2$ and $\delta(\mathbf{v}) \in\{(1,1),(1,2),(2,1),(2,2)\}$, or
(iv) $L \geq 3, n$ and $p_{\mathbf{v}}$ are not both even and $\delta(\mathbf{v}) \in\{(0,1),(0,2),(1,0),(2,0)\}$.

Length of flow paths

Example

Let $n=4, L=4$ and Q be the quiver

Length of flow paths

Example

Let $n=4, L=4$ and Q be the quiver

We have $r(\mathbf{v}, 4)=2-\frac{4}{2}=0$. Since $7=(0+1)\left(\frac{4-1}{2} 4+1\right)+0, \mathbf{v}$ is $(4,4)$-admissible ($p_{\mathbf{v}}=0$.)

Length of flow paths

Example

Let $n=4, L=4$ and Q be the quiver

We have $r(\mathbf{v}, 4)=2-\frac{4}{2}=0$. Since $21=(2+1)\left(\frac{4-1}{2} 4+1\right)+0, \mathbf{v}$ is $(4,4)$-admissible ($p_{\mathbf{v}}=2$.)

Length of flow paths

Example

Let $n=4, L=4$ and Q be the quiver

We have $r(\mathbf{v}, 4)=-\frac{4}{2}=-2$. Since $5=(0+1)\left(\frac{4-1}{2} 4+1\right)-2, \mathbf{v}$ is $(4,4)$-admissible ($p_{\mathbf{v}}=0$.)

Length of flow paths

Proposition [Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. Then every flow path in Q is (n, L)-admissible.

Length of flow paths

Proposition [Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. Then every flow path in Q is (n, L)-admissible.

To prove this, first we show the following.

Length of flow paths

Proposition [Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. Then every flow path in Q is (n, L)-admissible.

To prove this, first we show the following.
Lemma [Oppermann-V]
Let $\Lambda=\mathbf{k} Q / J^{L}$ and let $L \geq 3$. Assume there exists an n-CT subcategory $\mathcal{C} \subseteq \bmod \Lambda$. If \mathbf{v} is a k-flow path in Q, then $k \geq L+1$.

Injective non-projective indecomposables

Injective non-projective indecomposables

Now let

$$
\mathbf{v}=v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_{k}
$$

be a k-flow path in Q.

Injective non-projective indecomposables

Now let

$$
\mathbf{v}=v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_{k}
$$

be a k-flow path in Q.
Then

$$
\delta\left(v_{1}\right) \in\{(0,1),(1,2),(2,1),(2,2)\} \text { and } \delta\left(v_{k}\right) \in\{(1,0),(2,1),(1,2),(2,2)\}
$$

and $k \geq L+1$.

Injective non-projective indecomposables

Now let

$$
\mathbf{v}=v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_{k}
$$

be a k-flow path in Q.
Then

$$
\delta\left(v_{1}\right) \in\{(0,1),(1,2),(2,1),(2,2)\} \text { and } \delta\left(v_{k}\right) \in\{(1,0),(2,1),(1,2),(2,2)\}
$$

and $k \geq L+1$.
We want to define $L-1$ indecomposable injective non-projective Λ-modules which depend on $\delta\left(v_{1}\right)$.

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(0,1)$: then we have

$$
v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_{k}
$$

and we set

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(0,1)$: then we have

$$
v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_{k}
$$

and we set

$$
I_{\mathbf{V}}(1)=I\left(v_{1}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(0,1)$: then we have

$$
v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_{k}
$$

and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right), I_{\mathbf{v}}(2)=I\left(v_{2}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(0,1)$: then we have

$$
v_{1} \xrightarrow{\alpha_{1}} v_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_{k}
$$

and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right), I_{\mathbf{v}}(2)=I\left(v_{2}\right), \ldots, I_{\mathbf{v}}(L-1)=I\left(v_{L-1}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right) \in\{(1,2),(2,2)\}$: then we have

and we set

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right) \in\{(1,2),(2,2)\}$: then we have

and we set

$$
I_{\mathbf{v}}(1)=I\left(u_{2}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right) \in\{(1,2),(2,2)\}$: then we have

and we set

$$
I_{\mathbf{v}}(1)=I\left(u_{2}\right), I_{\mathbf{v}}(2)=I\left(u_{3}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right) \in\{(1,2),(2,2)\}$: then we have

and we set

$$
I_{\mathbf{v}}(1)=I\left(u_{2}\right), I_{\mathbf{v}}(2)=I\left(u_{3}\right), \ldots, I_{\mathbf{v}}(L-1)=I\left(u_{L}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(2,1)$: then we have
and we set

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(2,1)$: then we have
and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(2,1)$: then we have
and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right), I_{\mathbf{v}}(2)=I\left(v_{2}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(2,1)$: then we have
and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right), I_{\mathbf{v}}(2)=I\left(v_{2}\right), \ldots, I_{\mathbf{v}}(L-1)=I\left(v_{L-1}\right)
$$

Injective non-projective indecomposables

Case $\delta\left(v_{1}\right)=(2,1)$: then we have
and we set

$$
I_{\mathbf{v}}(1)=I\left(v_{1}\right), I_{\mathbf{v}}(2)=I\left(v_{2}\right), \ldots, I_{\mathbf{v}}(L-1)=I\left(v_{L-1}\right)
$$

Dually we define $P_{\mathbf{v}}(i)$ for $1 \leq i \leq L-1$.

Length of flow paths

Now to show that a k-flow path \mathbf{v} must be (n, L)-admissible, we compute

$$
\tau_{n}^{p}\left(I_{\mathbf{v}}(i)\right)
$$

$$
\text { for } 1 \leq i \leq L-1 \text { and } p \geq 0 \text {. }
$$

Length of flow paths

Now to show that a k-flow path \mathbf{v} must be (n, L)-admissible, we compute

$$
\tau_{n}^{p}\left(I_{\mathbf{v}}(i)\right)
$$

for $1 \leq i \leq L-1$ and $p \geq 0$.
A case by case analysis shows that the existence of an n-CT subcategory, implies that there exists $p_{\mathbf{v}}$ such that

$$
\tau_{n}^{p_{\mathbf{v}}+1}\left(I_{\mathbf{v}}(i)\right) \cong P_{\mathbf{v}}(L-i)
$$

Length of flow paths

Now to show that a k-flow path \mathbf{V} must be (n, L)-admissible, we compute

$$
\tau_{n}^{p}\left(I_{\mathbf{v}}(i)\right)
$$

for $1 \leq i \leq L-1$ and $p \geq 0$.
A case by case analysis shows that the existence of an n-CT subcategory, implies that there exists $p_{\mathbf{v}}$ such that

$$
\tau_{n}^{p_{\mathbf{v}}+1}\left(I_{\mathbf{v}}(i)\right) \cong P_{\mathbf{v}}(L-i)
$$

An explicit computation of the above isomorphism gives the condition on the length of v.

(n, L)-admissible quivers

Definition

Let $n \geq 2$ and $L \geq 2$. Let Q be an (n, L)-pre-admissible quiver. We say that Q is (n, L)-admissible if one of the following conditions holds:
(a) $Q=\tilde{A}_{m}$ and $\left.\left(2\left(\frac{n-1}{2} L+1\right)\right) \right\rvert\, 2(m+1)$, or
(b) $Q=\tilde{A}_{m}$ and $\left.\left(2\left(\frac{n-1}{2} L+1\right)\right) \right\rvert\, t(m+1)$, where $t=\operatorname{gcd}(n+1,2(L-1))$, or
(c) $Q \neq \tilde{A}_{m}$ and every k-flow path \mathbf{v} in Q is (n, L)-admissible.

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann-V]
The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver.

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann-V]
The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver. The n-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$.

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann-V]
The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver. The n-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$. It is unique if and only if $Q \neq \tilde{A}_{m}$.

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann-V]
The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver. The n-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$. It is unique if and only if $Q \neq \tilde{A}_{m}$.

Proof sketch

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann-V]
The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver. The n-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$. It is unique if and only if $Q \neq \tilde{A}_{m}$.

Proof sketch

For $Q \neq \tilde{A}_{m}:(\Longrightarrow)$ has been motivated.

(n, L)-admissible quivers

Theorem [case $Q=\tilde{A}_{m}$ Darpö-lyama, case $L=2 \mathrm{~V}$, case $L \geq 3$ Oppermann- V]

The algebra $\Lambda=\mathbf{k} Q / J^{L}$ admits an n-CT subcategory if and only if Q is an (n, L)-admissible quiver. The n-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \bmod \Lambda$. It is unique if and only if $Q \neq \tilde{A}_{m}$.

Proof sketch

For $Q \neq \tilde{A}_{m}:(\Longrightarrow)$ has been motivated. For the other direction, we first show existence of an n-CT in a universal cover of Q via a direct computation. Then we use a result of Darpö-lyama to induce an n-cluster tilting subcategory in $\bmod \Lambda$.

(n, L)-admissible quivers

Proposition
Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(ii) If $L=2$, then $\mathbf{k} Q / J^{2}$ is a representation-finite string algebra.

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(ii) If $L=2$, then $\mathbf{k} Q / J^{2}$ is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(ii) If $L=2$, then $\mathbf{k} Q / J^{2}$ is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:

- either they are supported only on vertices with degree $(1,1)$ (interval modules): $0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0$

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(ii) If $L=2$, then $\mathbf{k} Q / J^{2}$ is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:

- either they are supported only on vertices with degree (1,1) (interval modules): $0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0$, or
- they are supported in exactly one vertex with degree different than $(1,1)$.

(n, L)-admissible quivers

Proposition

Let $Q \neq \tilde{A}_{m}$ be an (n, L)-admissible quiver.
(i) There exist no parallel arrows in Q.
(ii) If $L=2$, then $\mathbf{k} Q / J^{2}$ is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:

- either they are supported only on vertices with degree $(1,1)$ (interval modules):

$$
0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0, \text { or }
$$

- they are supported in exactly one vertex with degree different than $(1,1)$. If that vertex has degree $(2,1)$ then an indecomposable has the form

and similarly in other cases.

(n, L)-admissible quivers

Assume $Q \neq \tilde{A}_{m}$ is (n, L)-admissible. To find an n-CT module M :

(n, L)-admissible quivers

Assume $Q \neq \tilde{A}_{m}$ is (n, L)-admissible. To find an n-CT module M :

- All projective and all injective indecomposable modules are direct summands of M.

(n, L)-admissible quivers

Assume $Q \neq \tilde{A}_{m}$ is (n, L)-admissible. To find an n-CT module M :

- All projective and all injective indecomposable modules are direct summands of M.
- If \mathbf{v} is a k-flow path in Q, then

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and there are exactly $p_{\mathbf{v}}(L-1)$ interval modules supported in \mathbf{v} which are direct summands of M.

(n, L)-admissible quivers

Assume $Q \neq \tilde{A}_{m}$ is (n, L)-admissible. To find an n-CT module M :

- All projective and all injective indecomposable modules are direct summands of M.
- If \mathbf{v} is a k-flow path in Q, then

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and there are exactly $p_{\mathbf{v}}(L-1)$ interval modules supported in \mathbf{v} which are direct summands of M.If $L \geq 3$, then these interval modules lie in diagonals as in the case $Q=A_{m}$ and this is where the parity conditions come from.

(n, L)-admissible quivers

Assume $Q \neq \tilde{A}_{m}$ is (n, L)-admissible. To find an n-CT module M :

- All projective and all injective indecomposable modules are direct summands of M.
- If \mathbf{v} is a k-flow path in Q, then

$$
k=\left(p_{\mathbf{v}}+1\right)\left(\frac{n-1}{2} L+1\right)+r(\mathbf{v}, L)
$$

and there are exactly $p_{\mathbf{v}}(L-1)$ interval modules supported in \mathbf{V} which are direct summands of M.If $L \geq 3$, then these interval modules lie in diagonals as in the case $Q=A_{m}$ and this is where the parity conditions come from.

- These are all the direct summands of M.

(n, L)-admissible quivers

Example

Let Q be the quiver

Then Q is $(4,4)$-admissible. Hence the algebra $\Lambda=\mathbf{k} Q / J^{4}$ admits a unique 4-CT subcategory \mathcal{C}.

(n, L)-admissible quivers

Example

Let Q be the quiver

Then Q is (4,4)-admissible. Hence the algebra $\Lambda=\mathbf{k} Q / J^{4}$ admits a unique 4-CT subcategory \mathcal{C}.

Moreover, $\mathcal{C}=\operatorname{add}(M)$ where M is the direct sum of the projective modules, the injective modules, and the interval modules (13), $(13,14),(13,14,15),(19,20,21)$, (20, 21), (21).

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1)$, $(1,0),(1,2)$, or $(2,1)$.

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1)$, $(1,0),(1,2)$, or $(2,1)$.For example

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1)$, $(1,0),(1,2)$, or $(2,1)$.For example

Then extend each arrow in this graph to an (n, L)-admissible flow path.

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1)$, $(1,0),(1,2)$, or $(2,1)$.For example

Then extend each arrow in this graph to an (n, L)-admissible flow path.In this example, we may pick $n=2$ and $p_{\mathbf{v}}=2$ for all arrows to obtain the (n, L)-admissible quiver

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda=\mathbf{k} Q / J^{L}$ is a wild algebra and admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1)$, $(1,0),(1,2)$, or $(2,1)$.For example

Then extend each arrow in this graph to an (n, L)-admissible flow path.In this example, we may pick $n=2$ and $p_{\mathbf{v}}=2$ for all arrows to obtain the (n, L)-admissible quiver

Picking L large enough, gives a wild algebra.

$n \mathbb{Z}$-cluster tilting subcategories

Definition [lyama-Jasso]

An n-cluster tilting subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called $n \mathbb{Z}$-cluster tilting if it is closed under Ω^{n}.

$n \mathbb{Z}$-cluster tilting subcategories

Definition [lyama-Jasso]

An n-cluster tilting subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called $n \mathbb{Z}$-cluster tilting if it is closed under Ω^{n}.

Theorem [Herschend-Kvamme-V, Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Then Λ admits an $n \mathbb{Z}$-cluster tilting subcategory if and only if one of the following conditions holds:
(i) $Q=A_{m}$ and $L=2$ or $L \mid(m-1)$, and $n=2 \frac{m-1}{L}$, or
(ii) $Q=\tilde{A}_{m}$ and $L=2$ or $L=n+2$, and $n \mid(m+1)$.

$n \mathbb{Z}$-cluster tilting subcategories

Definition [lyama-Jasso]

An n-cluster tilting subcategory $\mathcal{C} \subseteq \bmod \Lambda$ is called $n \mathbb{Z}$-cluster tilting if it is closed under Ω^{n}.

Theorem [Herschend-Kvamme-V, Oppermann-V]

Let $\Lambda=\mathbf{k} Q / J^{L}$. Then Λ admits an $n \mathbb{Z}$-cluster tilting subcategory if and only if one of the following conditions holds:
(i) $Q=A_{m}$ and $L=2$ or $L \mid(m-1)$, and $n=2 \frac{m-1}{L}$, or
(ii) $Q=\tilde{A}_{m}$ and $L=2$ or $L=n+2$, and $n \mid(m+1)$.

Corollary [Sandøy-Thibault]

Let $\Lambda=\mathbf{k} Q / J^{L}$ and $d=\operatorname{gl}$. dim.(Λ). There exists a d-CT subcategory of $\bmod \Lambda$ if and only if $Q=A_{m}$ and either of $L=2$ or $L \mid(m-1)$ holds.

A nice property for $L=2$

Theorem [V]
Let $\Lambda=\mathbf{k} Q / J^{2}$ and let N be the largest integer for which Q is $(N, 2)$-admissible. Then the following hold.

A nice property for $L=2$

Theorem [V]

Let $\Lambda=\mathbf{k} Q / J^{2}$ and let N be the largest integer for which Q is $(N, 2)$-admissible. Then the following hold.
(a) For each divisor n of N, the quiver Q is ($n, 2$)-admissible. In particular, there exists an n-cluster tilting subcategory $\mathcal{C}_{n} \subseteq \bmod \Lambda$.

A nice property for $L=2$

Theorem [V]

Let $\Lambda=\mathbf{k} Q / J^{2}$ and let N be the largest integer for which Q is $(N, 2)$-admissible. Then the following hold.
(a) For each divisor n of N, the quiver Q is ($n, 2$)-admissible. In particular, there exists an n-cluster tilting subcategory $\mathcal{C}_{n} \subseteq \bmod \Lambda$.
(b) The set $\left\{\mathcal{C}_{n} \mid n\right.$ is a divisor of $\left.N\right\}$ is a complete lattice with respect to inclusion isomorphic to the opposite of the lattice of divisors of N.

A nice property for $L=2$

Example

Let Q be the quiver

$$
\begin{aligned}
& \quad 23 \leftarrow 22 \leftarrow 21 \leftarrow 20 \longleftarrow 19 \\
& 1 \longleftrightarrow 14 \rightarrow 15 \longrightarrow 16 \longrightarrow 17 \rightarrow 18 \\
& \downarrow \\
& 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8 \rightarrow 9 \longrightarrow 10 \longrightarrow 11 \rightarrow 12 \rightarrow 13
\end{aligned}
$$

A nice property for $L=2$

Example

Let Q be the quiver

The largest N for which Q is $(N, 2)$-admissible is $N=12$.

A nice property for $L=2$

Example

The Auslander-Reiten quiver of $\Lambda=\mathbf{k} Q / J^{2}$ is

where the simple module $S(1)$ appears twice. Then we have

$$
\begin{array}{ll}
\mathcal{C}_{1}=\bmod \Lambda, & \mathcal{C}_{2}=\operatorname{add}\left\{\Lambda, 11,9,7,5,3, \frac{1}{14}, 23,21,19,17,15,{ }_{2}^{1}\right\}, \\
\mathcal{C}_{3}=\operatorname{add}\left\{\Lambda, 10,7,4, \frac{1}{14}, 22,19,16,{ }_{2}^{1}\right\}, & \mathcal{C}_{4}=\operatorname{add}\left\{\Lambda, 9,5,{ }_{14}, 21,17, \frac{1}{2}\right\}, \\
\mathcal{C}_{6}=\operatorname{add}\left\{\Lambda, 7,{ }_{14}^{1}, 19, \frac{1}{2}\right\}, & \mathcal{C}_{12}=\operatorname{add}\left\{\Lambda, \frac{1}{14}, \frac{1}{2}\right\},
\end{array}
$$

and \mathcal{C}_{n} is an n-cluster tilting subcategory of $\bmod \Lambda$.

A nice property for $L=2$

Example

Then the lattice

of divisors of 12

A nice property for $L=2$

Example

Then the lattice

of divisors of 12 corresponds to the lattice

of inclusions of n-cluster tilting subcategories of $\bmod \Lambda$.

Thank You!

