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Introduction

k — a field.

Λ — a finite-dimensional k-algebra.

modΛ — category of finitely generated right Λ-modules.
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Introduction

Definition [Iyama]
A functorially finite subcategory C ⊆ modΛ is called an n-cluster tilting (CT)
subcategory if

C = {X ∈ modΛ | ExtiΛ(C, X) = 0 for 0 < i < n}
= {X ∈ modΛ | ExtiΛ(X, C) = 0 for 0 < i < n}.

If C = add(M) for some M ∈ modΛ, then we call M an n-cluster tilting module.

• If M ∈ modΛ, then add(M) is functorially finite.
• C = modΛ is the unique 1-cluster tilting subcategory.
• ∃ 1-cluster tilting module M ⇐⇒ modΛ = add(M)

⇐⇒ Λ is representation-finite.
• n ≤ gl.dim.(Λ).
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Introduction

We denote by τn := τΩn−1 and τ−n := τ−Ω−(n−1) the n-Auslander–Reiten translations.

For a subcategory C ⊆ modΛ we set

CP := {isoclasses of indecomposable non projective Λ-modules in C}

CI := {isoclasses of indecomposable non injective Λ-modules in C}.
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Introduction

Proposition [Iyama, V]
Let C ⊆ modΛ be n-CT. Then the following hold.

(a) C contains all projective and all injective Λ-modules.
(b) τn : CP −→ CI and τ−n : CI −→ CP are mutually inverse bijections.
(c) Let M ∈ CP . Then Ωi(M) is indecomposable for 1 ≤ i ≤ n− 1.
(d) Let M ∈ CI . Then Ω−i(M) is indecomposable for 1 ≤ i ≤ n− 1.

5

C = {X ∈ modΛ | ExtiΛ(C, X) = 0 for 0 < i < n}

= {X ∈ modΛ | ExtiΛ(X, C) = 0 for 0 < i < n}.
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Introduction

Examples where n-cluster tilting subcategories exist:
• tensor products of l-homogeneous n-representation-finite algebras (if k is perfect)

[Herschend–Iyama]
• n-APR tilts of n-representation-finite algebras [Iyama–Oppermann]
• higher Nakayama algebras [Jasso–Külshammer]
• many more...
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Main question

From now on:

• Q is a (connected, finite) quiver,

• J is the arrow ideal of kQ,

• L ≥ 2 is an integer,

• n ≥ 2 is an integer,

• Λ = kQ/JL (truncated path algebra).

Question
For which Q, L and n does there exist an n-CT subcategory/module of modΛ?
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The quivers Am and Ãm

Am := 1
α1−→ 2

α2−→ · · · αm−1−→ m.

Ãm :=

10

m 2.

α0

α1αm

αm−1 α2
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Known cases

The answer is known in the following cases:

• Λ = kAm/JL [L = 2 Jasso, L ≥ 3 V],
• Λ = kÃm/JL [Darpö–Iyama],
• Λ = kQ/JL and n = gl.dim.(Λ) [Sandøy–Thibault],
• Λ = kQ/J2 [V].
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L = 2 and L ≥ 3

Example for L ≥ 3

The Auslander–Reiten quiver of kA9/J
3 is
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and the additive closure of the encircled modules is a 2-CT subcategory.

In general, if Q = Am and L ≥ 3, and if there exists an n-CT subcategory, then n is
even.
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L = 2 and L ≥ 3

Example for L = 2

The Auslander–Reiten quiver of kA7/J
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In general, if L = 2, there is no restriction on the parity of n.
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Answer for anyQ, L, n

Two ingredients:
• the shape of Q, and
• the length of certain paths in Q.

Remark
The case Q = Ãm and the case L = 2 are special.

Theorem [Darpö–Iyama]
Let Λ = kÃm/JL. There exists an n-CT subcategory of modΛ if and only if one of
the following two conditions holds:
(i)

(
2
(
n−1
2 L+ 1

))
| 2(m+ 1), or

(ii)
(
2
(
n−1
2 L+ 1

))
| t(m+ 1), where t = gcd(n+ 1, 2(L− 1)).

There are many different n-CT subcategories, all of the form add(M) for some
M ∈ modΛ.
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Let Λ = kÃm/JL. There exists an n-CT subcategory of modΛ if and only if one of
the following two conditions holds:
(i)

(
2
(
n−1
2 L+ 1

))
| 2(m+ 1), or

(ii)
(
2
(
n−1
2 L+ 1

))
| t(m+ 1), where t = gcd(n+ 1, 2(L− 1)).

There are many different n-CT subcategories, all of the form add(M) for some
M ∈ modΛ.

12



Shape ofQ

For a vertex v in Q we denote
• δ−(v):=number of arrows terminating at v (incoming degree)
• δ+(v):=number of arrows starting at v (outgoing degree)
• δ(v):= (δ−(v), δ+(v)) (degree)

13



Shape ofQ

Proposition [Oppermann-V]
Let Λ = kQ/JL. Assume there exists an n-CT subcategory C ⊆ modΛ. Then for
every v ∈ Q0 we have

δ(v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)}.

Moreover, if L ≥ 3 or n ≥ 3, then δ(v) 6= (2, 2).

Proof sketch
Assume that there are at least 3 arrows terminating at v. Show that Ω(I(v)) has at
least two indecomposable summands using results of Huisgen-Zimmermann.
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Shape ofQ

Definition
Let Q be a quiver, let n ≥ 2 and let L ≥ 2. We say that Q is (n,L)-pre-admissible if
(i) every vertex of Q has at most two incoming and at most two outgoing arrows,
(ii) no vertex of Q has degree (0, 2) or (2, 0), and
(iii) if L ≥ 3 or n ≥ 3, then no vertex of Q has degree (2, 2).
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Flow paths

Definition
Let k ≥ 2. A k-flow path v in Q is a path

v = v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk

such that
• δ(v1) 6= (1, 1),
• δ(vk) 6= (1, 1), and
• δ(vi) = (1, 1) for all 1 < i < k.

We define the degree of v to be δ(v) = (δ−(v), δ+(v)) := (δ−(v1), δ
+(vk)).

Note: if Q is (n,L)-pre-admissible, then there exists a k-flow path if and only if
Q 6= A1 and Q 6= Ãm.
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Length of flow paths

Let Q be (n,L)-pre-admissible and let v be a k-flow path in Q. We define r(v, L)
depending on the degrees of v1 and v2 as in the following table:

δ(v1)

δ(vk) (1,0) (2,1) (1,2) (2,2)

(0,1) L
2 1 0 1

(1,2) 1 2− L
2 1− L

2 1

(2,1) 0 1− L
2 −L

2 0

(2,2) 1 1 0 1

Example
Let v be a k-flow path with δ(v1) = (1, 2) and δ(vk) = (2, 1). Then
r(v, 4) = 2− 4

2 = 0.
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Length of flow paths

Definition
Let Q be an (n,L)-pre-admissible quiver and v be a k-flow path in Q. We say that v
is (n,L)-admissible if there exists an integer pv ≥ 0 such that

k = (pv + 1)
(
n−1
2 L+ 1

)
+ r(v, L)

and one of the following conditions holds:

(i) L = 2,
(ii) L ≥ 3, n and pv are both even and δ(v) = (0, 0),
(iii) L ≥ 3, n and pv are both even, n+ pv > 2 and δ(v) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)},

or
(iv) L ≥ 3, n and pv are not both even and δ(v) ∈ {(0, 1), (0, 2), (1, 0), (2, 0)}.
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Length of flow paths

Example
Let n = 4, L = 4 and Q be the quiver

1 7

2 3 4 5 6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

29 28 27
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Length of flow paths

Example
Let n = 4, L = 4 and Q be the quiver

1 7

2 3 4 5 6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

29 28 27

We have r(v, 4) = 2− 4
2 = 0. Since 7 = (0 + 1)

(
4−1
2 4 + 1

)
+ 0, v is (4, 4)-admissible

(pv = 0.)
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Length of flow paths

Example
Let n = 4, L = 4 and Q be the quiver

1 7

2 3 4 5 6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

29 28 27

We have r(v, 4) = 2− 4
2 = 0. Since 21 = (2 + 1)

(
4−1
2 4 + 1

)
+ 0, v is (4, 4)-admissible

(pv = 2.)
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Length of flow paths

Example
Let n = 4, L = 4 and Q be the quiver

1 7

2 3 4 5 6

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

29 28 27

We have r(v, 4) = −4
2 = −2. Since 5 = (0 + 1)

(
4−1
2 4 + 1

)
− 2, v is (4, 4)-admissible

(pv = 0.)

19



Length of flow paths

Proposition [Oppermann–V]
Let Λ = kQ/JL. Assume there exists an n-CT subcategory C ⊆ modΛ. Then every
flow path in Q is (n,L)-admissible.

To prove this, first we show the following.

Lemma [Oppermann–V]
Let Λ = kQ/JL and let L ≥ 3. Assume there exists an n-CT subcategory C ⊆ modΛ.
If v is a k-flow path in Q, then k ≥ L+ 1.
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Injective non-projective indecomposables

Now let
v = v1

α1 // v2
α2 // · · ·

αk−2 // vk−1
αk−1 // vk

be a k-flow path in Q.
Then

δ(v1) ∈ {(0, 1), (1, 2), (2, 1), (2, 2)} and δ(vk) ∈ {(1, 0), (2, 1), (1, 2), (2, 2)},

and k ≥ L+ 1.
We want to define L− 1 indecomposable injective non-projective Λ-modules which
depend on δ(v1).

21



Injective non-projective indecomposables

Now let
v = v1

α1 // v2
α2 // · · ·

αk−2 // vk−1
αk−1 // vk

be a k-flow path in Q.

Then

δ(v1) ∈ {(0, 1), (1, 2), (2, 1), (2, 2)} and δ(vk) ∈ {(1, 0), (2, 1), (1, 2), (2, 2)},

and k ≥ L+ 1.
We want to define L− 1 indecomposable injective non-projective Λ-modules which
depend on δ(v1).

21



Injective non-projective indecomposables

Now let
v = v1

α1 // v2
α2 // · · ·

αk−2 // vk−1
αk−1 // vk

be a k-flow path in Q.
Then

δ(v1) ∈ {(0, 1), (1, 2), (2, 1), (2, 2)} and δ(vk) ∈ {(1, 0), (2, 1), (1, 2), (2, 2)},

and k ≥ L+ 1.

We want to define L− 1 indecomposable injective non-projective Λ-modules which
depend on δ(v1).

21



Injective non-projective indecomposables

Now let
v = v1

α1 // v2
α2 // · · ·

αk−2 // vk−1
αk−1 // vk

be a k-flow path in Q.
Then

δ(v1) ∈ {(0, 1), (1, 2), (2, 1), (2, 2)} and δ(vk) ∈ {(1, 0), (2, 1), (1, 2), (2, 2)},

and k ≥ L+ 1.
We want to define L− 1 indecomposable injective non-projective Λ-modules which
depend on δ(v1).

21



Injective non-projective indecomposables

Case δ(v1) = (0, 1): then we have

v1
α1 // v2

α2 // · · ·
αL−2// vL−1

αL−1 // · · ·
αk−1 // vk

and we set

Iv(1) = I(v1), Iv(2) = I(v2), . . . , Iv(L− 1) = I(vL−1).
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Injective non-projective indecomposables

Case δ(v1) ∈ {(1, 2), (2, 2)}: then we have

v2
α2 // · · ·

αL−1 // vL
αL // · · ·

v1 β1
**UUUU

UU
α1 44iiiiii

u2
β2 // · · ·

βL−1 // uL
βL // · · ·

and we set

Iv(1) = I(u2), Iv(2) = I(u3), . . . , Iv(L− 1) = I(uL).
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Injective non-projective indecomposables

Case δ(v1) = (2, 1): then we have

· · ·
α1−L // v2−L

α2−L // · · ·
α−1 // v0 α0

**TTT
TTT

v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk
· · ·

β1−L// u2−L
β2−L // · · ·

β−1 // u0

β0 44jjjjjj

and we set

Iv(1) = I(v1), Iv(2) = I(v2), . . . , Iv(L− 1) = I(vL−1).

Dually we define Pv(i) for 1 ≤ i ≤ L− 1.

24



Injective non-projective indecomposables

Case δ(v1) = (2, 1): then we have

· · ·
α1−L // v2−L

α2−L // · · ·
α−1 // v0 α0

**TTT
TTT

v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk
· · ·

β1−L// u2−L
β2−L // · · ·

β−1 // u0

β0 44jjjjjj

and we set
Iv(1) = I(v1)

, Iv(2) = I(v2), . . . , Iv(L− 1) = I(vL−1).

Dually we define Pv(i) for 1 ≤ i ≤ L− 1.

24



Injective non-projective indecomposables

Case δ(v1) = (2, 1): then we have

· · ·
α1−L // v2−L

α2−L // · · ·
α−1 // v0 α0

**TTT
TTT

v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk
· · ·

β1−L// u2−L
β2−L // · · ·

β−1 // u0

β0 44jjjjjj

and we set
Iv(1) = I(v1), Iv(2) = I(v2)

, . . . , Iv(L− 1) = I(vL−1).

Dually we define Pv(i) for 1 ≤ i ≤ L− 1.

24



Injective non-projective indecomposables

Case δ(v1) = (2, 1): then we have

· · ·
α1−L // v2−L

α2−L // · · ·
α−1 // v0 α0

**TTT
TTT

v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk
· · ·

β1−L// u2−L
β2−L // · · ·

β−1 // u0

β0 44jjjjjj

and we set
Iv(1) = I(v1), Iv(2) = I(v2), . . . , Iv(L− 1) = I(vL−1).

Dually we define Pv(i) for 1 ≤ i ≤ L− 1.

24



Injective non-projective indecomposables

Case δ(v1) = (2, 1): then we have

· · ·
α1−L // v2−L

α2−L // · · ·
α−1 // v0 α0

**TTT
TTT

v1
α1 // v2

α2 // · · ·
αk−2 // vk−1

αk−1 // vk
· · ·

β1−L// u2−L
β2−L // · · ·

β−1 // u0

β0 44jjjjjj

and we set
Iv(1) = I(v1), Iv(2) = I(v2), . . . , Iv(L− 1) = I(vL−1).

Dually we define Pv(i) for 1 ≤ i ≤ L− 1.

24



Length of flow paths

Now to show that a k-flow path v must be (n,L)-admissible, we compute

τpn(Iv(i))

for 1 ≤ i ≤ L− 1 and p ≥ 0.

A case by case analysis shows that the existence of an n-CT subcategory, implies that
there exists pv such that

τpv+1
n (Iv(i)) ∼= Pv(L− i).

An explicit computation of the above isomorphism gives the condition on the length of
v .
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(n, L)-admissible quivers

Definition
Let n ≥ 2 and L ≥ 2. Let Q be an (n,L)-pre-admissible quiver. We say that Q is
(n,L)-admissible if one of the following conditions holds:
(a) Q = Ãm and

(
2
(
n−1
2 L+ 1

))
| 2(m+ 1), or

(b) Q = Ãm and
(
2
(
n−1
2 L+ 1

))
| t(m+ 1), where t = gcd(n+ 1, 2(L− 1)), or

(c) Q 6= Ãm and every k-flow path v in Q is (n,L)-admissible.
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(n, L)-admissible quivers

Theorem [case Q = Ãm Darpö–Iyama, case L = 2 V, case L ≥ 3 Oppermann–V]
The algebra Λ = kQ/JL admits an n-CT subcategory if and only if Q is an
(n,L)-admissible quiver.

The n-CT subcategory is always of the form add(M) for
some M ∈ modΛ. It is unique if and only if Q 6= Ãm.

Proof sketch
For Q 6= Ãm: ( =⇒ ) has been motivated. For the other direction, we first show
existence of an n-CT in a universal cover of Q via a direct computation. Then we use
a result of Darpö–Iyama to induce an n-cluster tilting subcategory in modΛ.
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Theorem [case Q = Ãm Darpö–Iyama, case L = 2 V, case L ≥ 3 Oppermann–V]
The algebra Λ = kQ/JL admits an n-CT subcategory if and only if Q is an
(n,L)-admissible quiver. The n-CT subcategory is always of the form add(M) for
some M ∈ modΛ. It is unique if and only if Q 6= Ãm.
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(n, L)-admissible quivers

Proposition
Let Q 6= Ãm be an (n,L)-admissible quiver.

(i) There exist no parallel arrows in Q.
(ii) If L = 2, then kQ/J2 is a representation-finite string algebra.
(iii) Indecomposable modules are of two forms:

• either they are supported only on vertices with degree (1, 1) (interval modules):
0

0−→ k
'−→ k

'−→ · · · '−→ k
0−→ 0, or

• they are supported in exactly one vertex with degree different than (1, 1). If
that vertex has degree (2, 1) then an indecomposable has the form
0 �
� //Mv2−L

� � // · · · �
� //Mv0

� w

**TTT
TTT

Mv1
// //Mv2

// // · · · // //MvL
// // 0,

0 �
� //Mu2−L

� � // · · · �
� //Mu0

' �
44jjjjjj

and similarly in other cases.
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(n, L)-admissible quivers

Assume Q 6= Ãm is (n,L)-admissible. To find an n-CT module M :

• All projective and all injective indecomposable modules are direct summands of M .
• If v is a k-flow path in Q, then

k = (pv + 1)
(
n−1
2 L+ 1

)
+ r(v, L)

and there are exactly pv(L− 1) interval modules supported in v which are direct
summands of M .If L ≥ 3, then these interval modules lie in diagonals as in the
case Q = Am and this is where the parity conditions come from.

• These are all the direct summands of M .
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(n, L)-admissible quivers

Example
Let Q be the quiver

1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 7.

2 3 4 5 6

29 28 27

Then Q is (4, 4)-admissible. Hence the algebra Λ = kQ/J4 admits a unique 4-CT
subcategory C.

Moreover, C = add(M) where M is the direct sum of the projective modules, the
injective modules, and the interval modules (13), (13, 14), (13, 14, 15), (19, 20, 21),
(20, 21), (21).
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How to find examples

It is easy to find (n,L)-admissible quivers such that Λ = kQ/JL is a wild algebra and
admits an n-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree (0, 1),
(1, 0), (1, 2), or (2, 1).For example

1 2

Then extend each arrow in this graph to an (n,L)-admissible flow path.In this example,
we may pick n = 2 and pv = 2 for all arrows to obtain the (n,L)-admissible quiver

v1

v2· · ·

vL+3 u2 · · · uL+5

uL+6 · · ·

u2L+7

Picking L large enough, gives a wild algebra.
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nZ-cluster tilting subcategories

Definition [Iyama–Jasso]
An n-cluster tilting subcategory C ⊆ modΛ is called nZ-cluster tilting if it is closed
under Ωn.

Theorem [Herschend–Kvamme-V, Oppermann-V]
Let Λ = kQ/JL. Then Λ admits an nZ-cluster tilting subcategory if and only if one of
the following conditions holds:
(i) Q = Am and L = 2 or L | (m− 1), and n = 2m−1

L , or
(ii) Q = Ãm and L = 2 or L = n+ 2, and n | (m+ 1).

Corollary [Sandøy–Thibault]
Let Λ = kQ/JL and d = gl.dim.(Λ). There exists a d-CT subcategory of modΛ if
and only if Q = Am and either of L = 2 or L | (m− 1) holds.
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(ii) Q = Ãm and L = 2 or L = n+ 2, and n | (m+ 1).

Corollary [Sandøy–Thibault]
Let Λ = kQ/JL and d = gl.dim.(Λ). There exists a d-CT subcategory of modΛ if
and only if Q = Am and either of L = 2 or L | (m− 1) holds.

32



nZ-cluster tilting subcategories

Definition [Iyama–Jasso]
An n-cluster tilting subcategory C ⊆ modΛ is called nZ-cluster tilting if it is closed
under Ωn.

Theorem [Herschend–Kvamme-V, Oppermann-V]
Let Λ = kQ/JL. Then Λ admits an nZ-cluster tilting subcategory if and only if one of
the following conditions holds:
(i) Q = Am and L = 2 or L | (m− 1), and n = 2m−1

L , or
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A nice property for L = 2

Theorem [V]
Let Λ = kQ/J2 and let N be the largest integer for which Q is (N, 2)-admissible.
Then the following hold.

(a) For each divisor n of N , the quiver Q is (n, 2)-admissible. In particular, there exists
an n-cluster tilting subcategory Cn ⊆ modΛ.

(b) The set {Cn | n is a divisor of N} is a complete lattice with respect to inclusion
isomorphic to the opposite of the lattice of divisors of N .
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A nice property for L = 2

Example
Let Q be the quiver

23 22 21 20 19

1 14 15 16 17 18

2 3 4 5 6 7 8 9 10 11 12 13.

The largest N for which Q is (N, 2)-admissible is N = 12.
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A nice property for L = 2

Example
The Auslander–Reiten quiver of Λ = kQ/J2 is

13

12
13

12

11
12

11

10
11

10

9
10

9

8
9

8

7
8

7

6
7

6

5
6

5

4
5

4

3
4

3

2
3

2

1

23
1

23

22
23

22

21
22

21

20
21

20

19
20

19

18
19

18

17
18

17

16
17

16

15
16

15

14
15

14

1
2 14

1
14

1
2

1,

where the simple module S(1) appears twice. Then we have

C1 = modΛ, C2 = add{Λ, 11 , 9 , 7 , 5 , 3 , 1
14 , 23 , 21 , 19 , 17 , 15 , 1

2 },
C3 = add{Λ, 10 , 7 , 4 , 1

14 , 22 , 19 , 16 , 1
2 }, C4 = add{Λ, 9 , 5 , 1

14 , 21 , 17 , 1
2 },

C6 = add{Λ, 7 , 1
14 , 19 , 1

2 }, C12 = add{Λ, 1
14 ,

1
2 },

and Cn is an n-cluster tilting subcategory of modΛ.
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A nice property for L = 2

Example
Then the lattice

12

4 6

2 3

1

of divisors of 12

corresponds to the lattice
C12

C4 C6

C2 C3

C1

⊂⊃

⊂ ⊂⊃

⊂ ⊃

of inclusions of n-cluster tilting subcategories of modΛ.
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Thank You!
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