$n\mathchar`-cluster$ tilting subcategories for truncated path algebras

Laertis Vaso

Institutt for matematiske fag

Joint work in progress with Steffen Oppermann (NTNU)

FD Seminar 19 January 2023

k — a field.

k — a field.

 Λ — a finite-dimensional ${\bf k}\mbox{-algebra}.$

k — a field.

 Λ — a finite-dimensional ${\bf k}\mbox{-algebra}.$

 $\operatorname{mod}\Lambda$ — category of finitely generated right Λ -modules.

Definition [lyama]

A functorially finite subcategory $C \subseteq \text{mod } \Lambda$ is called an *n*-cluster tilting (CT) subcategory if

$$\begin{split} \mathcal{C} &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \,\, \mathsf{for}\,\, 0 < i < n \} \\ &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \,\, \mathsf{for}\,\, 0 < i < n \}. \end{split}$$

If $\mathcal{C} = \operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$, then we call M an *n*-cluster tilting module.

Definition [lyama]

A functorially finite subcategory $C \subseteq \text{mod } \Lambda$ is called an *n*-cluster tilting (CT) subcategory if

$$\begin{split} \mathcal{C} &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \,\, \mathsf{for}\,\, 0 < i < n \} \\ &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \,\, \mathsf{for}\,\, 0 < i < n \}. \end{split}$$

If $\mathcal{C} = \operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$, then we call M an *n*-cluster tilting module.

• If $M \in \text{mod } \Lambda$, then add(M) is functorially finite.

Definition [lyama]

A functorially finite subcategory $C \subseteq \text{mod } \Lambda$ is called an *n*-cluster tilting (CT) subcategory if

$$\begin{split} \mathcal{C} &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \,\, \mathsf{for}\,\, 0 < i < n \} \\ &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \,\, \mathsf{for}\,\, 0 < i < n \}. \end{split}$$

If $\mathcal{C} = \operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$, then we call M an *n*-cluster tilting module.

- If $M \in \operatorname{mod} \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C} = \operatorname{mod} \Lambda$ is the unique 1-cluster tilting subcategory.

Definition [lyama]

A functorially finite subcategory $C \subseteq \text{mod } \Lambda$ is called an *n*-cluster tilting (CT) subcategory if

$$\begin{split} \mathcal{C} &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C}, X) = 0 \,\, \mathsf{for}\,\, 0 < i < n \} \\ &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X, \mathcal{C}) = 0 \,\, \mathsf{for}\,\, 0 < i < n \}. \end{split}$$

If $\mathcal{C} = \operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$, then we call M an *n*-cluster tilting module.

- If $M \in \operatorname{mod} \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C} = \operatorname{mod} \Lambda$ is the unique 1-cluster tilting subcategory.
- \exists 1-cluster tilting module $M \iff \operatorname{mod} \Lambda = \operatorname{add}(M)$

 $\iff \Lambda \text{ is representation-finite}.$

Definition [lyama]

A functorially finite subcategory $C \subseteq \text{mod } \Lambda$ is called an *n*-cluster tilting (CT) subcategory if

$$\begin{split} \mathcal{C} &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \,\, \mathsf{for}\,\, 0 < i < n \} \\ &= \{ X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \,\, \mathsf{for}\,\, 0 < i < n \}. \end{split}$$

If $\mathcal{C} = \operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$, then we call M an *n*-cluster tilting module.

- If $M \in \operatorname{mod} \Lambda$, then $\operatorname{add}(M)$ is functorially finite.
- $\mathcal{C} = \operatorname{mod} \Lambda$ is the unique 1-cluster tilting subcategory.
- \exists 1-cluster tilting module $M \iff \operatorname{mod} \Lambda = \operatorname{add}(M)$

 $\iff \Lambda \text{ is representation-finite}.$

 $\bullet \ n \leq {\rm gl.} \dim.(\Lambda).$

We denote by $\tau_n \coloneqq \tau \Omega^{n-1}$ and $\tau_n^- \coloneqq \tau^- \Omega^{-(n-1)}$ the *n*-Auslander-Reiten translations.

We denote by $\tau_n \coloneqq \tau \Omega^{n-1}$ and $\tau_n^- \coloneqq \tau^- \Omega^{-(n-1)}$ the *n*-Auslander–Reiten translations.

For a subcategory $\mathcal{C}\subseteq\operatorname{\mathsf{mod}}\Lambda$ we set

 $\mathcal{C}_{\mathcal{P}} := \{ \text{isoclasses of indecomposable non projective } \Lambda \text{-modules in } \mathcal{C} \}$

 $\mathcal{C}_{\mathcal{I}} := \{ \text{isoclasses of indecomposable non injective } \Lambda \text{-modules in } \mathcal{C} \}.$

$$\begin{split} \mathcal{C} &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \text{ for } 0 < i < n\} \\ &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \text{ for } 0 < i < n\} \end{split}$$

Proposition [lyama, V]

Let $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ be *n*-CT. Then the following hold.

$$\begin{split} \mathcal{C} &= \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^i_\Lambda(\mathcal{C},X) = 0 \text{ for } 0 < i < n\} \\ &= \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \text{ for } 0 < i < n\}. \end{split}$$

Proposition [Iyama, V]

Let $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ be *n*-CT. Then the following hold.

(a) C contains all projective and all injective Λ -modules.

$$\begin{split} \mathcal{C} &= \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^i_\Lambda(\mathcal{C},X) = 0 \text{ for } 0 < i < n\} \\ &= \{X \in \operatorname{mod} \Lambda \mid \operatorname{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \text{ for } 0 < i < n\}. \end{split}$$

Proposition [Iyama, V]

Let $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ be *n*-CT. Then the following hold.

- (a) C contains all projective and all injective Λ -modules.
- (b) $\tau_n : \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_n^- : \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.

$$\begin{split} \mathcal{C} &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \text{ for } 0 < i < n\} \\ &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \text{ for } 0 < i < n\}. \end{split}$$

Proposition [Iyama, V]

Let $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ be *n*-CT. Then the following hold.

- (a) C contains all projective and all injective Λ -modules.
- (b) $\tau_n : \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_n^- : \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.
- (c) Let $M \in \mathcal{C}_{\mathcal{P}}$. Then $\Omega^{i}(M)$ is indecomposable for $1 \leq i \leq n-1$.

$$\begin{split} \mathcal{C} &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(\mathcal{C},X) = 0 \text{ for } 0 < i < n\} \\ &= \{X \in \mathsf{mod}\,\Lambda \mid \mathsf{Ext}^i_\Lambda(X,\mathcal{C}) = 0 \text{ for } 0 < i < n\}. \end{split}$$

Proposition [Iyama, V]

Let $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ be *n*-CT. Then the following hold.

(a) C contains all projective and all injective Λ -modules.

(b) $\tau_n : \mathcal{C}_{\mathcal{P}} \longrightarrow \mathcal{C}_{\mathcal{I}}$ and $\tau_n^- : \mathcal{C}_{\mathcal{I}} \longrightarrow \mathcal{C}_{\mathcal{P}}$ are mutually inverse bijections.

(c) Let $M \in \mathcal{C}_{\mathcal{P}}$. Then $\Omega^{i}(M)$ is indecomposable for $1 \leq i \leq n-1$.

(d) Let $M \in \mathcal{C}_{\mathcal{I}}$. Then $\Omega^{-i}(M)$ is indecomposable for $1 \leq i \leq n-1$.

Examples where n-cluster tilting subcategories exist:

- tensor products of *l*-homogeneous *n*-representation-finite algebras (if k is perfect) [Herschend–lyama]
- *n*-APR tilts of *n*-representation-finite algebras [lyama–Oppermann]
- higher Nakayama algebras [Jasso-Külshammer]
- many more...

From now on:

• Q is a (connected, finite) quiver,

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k}Q$,

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k}Q$,
- $L \ge 2$ is an integer,

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k}Q$,
- $L \ge 2$ is an integer,
- $n \geq 2$ is an integer,

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k}Q$,
- $L \ge 2$ is an integer,
- $n \geq 2$ is an integer,
- $\Lambda = \mathbf{k}Q/J^L$ (truncated path algebra).

From now on:

- Q is a (connected, finite) quiver,
- J is the arrow ideal of $\mathbf{k}Q$,
- $L \ge 2$ is an integer,
- $n \geq 2$ is an integer,
- $\Lambda = \mathbf{k}Q/J^L$ (truncated path algebra).

Question

For which Q, L and n does there exist an n-CT subcategory/module of mod Λ ?

The quivers A_m and \tilde{A}_m

The answer is known in the following cases:

The answer is known in the following cases:

•
$$\Lambda = \mathbf{k} A_m / J^L \ [L = 2 \text{ Jasso, } L \ge 3 \text{ V}],$$

The answer is known in the following cases:

•
$$\Lambda = \mathbf{k} A_m / J^L$$
 $[L = 2$ Jasso, $L \ge 3$ V],

• $\Lambda = \mathbf{k} \tilde{A}_m / J^L$ [Darpö–lyama],

The answer is known in the following cases:

•
$$\Lambda = \mathbf{k} A_m / J^L$$
 [$L = 2$ Jasso, $L \ge 3$ V],

- $\Lambda = \mathbf{k} \tilde{A}_m / J^L$ [Darpö–lyama],
- $\Lambda = \mathbf{k}Q/J^L$ and $n = \mathsf{gl.\,dim.}(\Lambda)$ [Sandøy–Thibault],

The answer is known in the following cases:

•
$$\Lambda = \mathbf{k} A_m / J^L$$
 [$L = 2$ Jasso, $L \ge 3$ V],

- $\Lambda = \mathbf{k} \tilde{A}_m / J^L$ [Darpö–lyama],
- $\Lambda = \mathbf{k}Q/J^L$ and $n = \mathsf{gl.dim.}(\Lambda)$ [Sandøy–Thibault],
- $\Lambda = \mathbf{k}Q/J^2$ [V].

Example for $L \geq 3$

The Auslander–Reiten quiver of $\mathbf{k}A_9/J^3$ is

Example for $L \geq 3$

The Auslander–Reiten quiver of $\mathbf{k}A_9/J^3$ is

$$9 \cdots 8 \cdots 7 \cdots 6 \cdots 5 \cdots 4 \cdots 3 \cdots 2 \cdots 1$$

and the additive closure of the encircled modules is a 2-CT subcategory.

Example for $L \geq 3$

The Auslander–Reiten quiver of $\mathbf{k}A_9/J^3$ is

and the additive closure of the encircled modules is a 2-CT subcategory.

In general, if $Q=A_m$ and $L\geq 3,$ and if there exists an $n\text{-}\mathsf{CT}$ subcategory, then n is even.

Example for L = 2

The Auslander–Reiten quiver of $\mathbf{k}A_7/J^2$ is

$$\xrightarrow{6}_{7} \xrightarrow{5}_{\sim} \xrightarrow{7}_{6} \xrightarrow{5}_{\sim} \xrightarrow{4}_{5} \xrightarrow{3}_{\sim} \xrightarrow{3}_{4} \xrightarrow{2}_{3} \xrightarrow{2}_{\sim} \xrightarrow{1}_{2} \xrightarrow{1}_{\sim} \xrightarrow$$

and there exist

Example for L = 2

The Auslander–Reiten quiver of $\mathbf{k}A_7/J^2$ is

$$\xrightarrow{6}_{7} \xrightarrow{5}_{\sim} \xrightarrow{5}_{5} \xrightarrow{4}_{5} \xrightarrow{3}_{4} \xrightarrow{3}_{4} \xrightarrow{2}_{3} \xrightarrow{2}_{2} \xrightarrow{1}_{2} \xrightarrow$$

and there exist

a 2-CT subcategory

Example for L = 2

The Auslander–Reiten quiver of $\mathbf{k}A_7/J^2$ is

$$\xrightarrow{6}_{7} \xrightarrow{5}_{\sim} \xrightarrow{5}_{5} \xrightarrow{4}_{5} \xrightarrow{3}_{4} \xrightarrow{3}_{4} \xrightarrow{2}_{3} \xrightarrow{2}_{2} \xrightarrow{1}_{2} \xrightarrow$$

and there exist

$$\bigcirc \overset{\mathcal{P}}{\longrightarrow} , \overset{\mathcal{P}}{\longrightarrow} \overset{\mathcal{P}}{\longrightarrow} , \overset{\mathcal$$

a $2\text{-}\mathsf{CT}$ subcategory

a 3-CT subcategory
L = 2 and $L \ge 3$

Example for L = 2

The Auslander–Reiten quiver of $\mathbf{k}A_7/J^2$ is

$$\xrightarrow{}_{7} \xrightarrow{}_{6} \xrightarrow{}_{6} \xrightarrow{}_{5} \xrightarrow{}_{5} \xrightarrow{}_{5} \xrightarrow{}_{4} \xrightarrow{}_{3} \xrightarrow{}_{3} \xrightarrow{}_{3} \xrightarrow{}_{2} \xrightarrow{}_{2} \xrightarrow{}_{2} \xrightarrow{}_{2} \xrightarrow{}_{2} \xrightarrow{}_{1} \xrightarrow{}_{2} \xrightarrow{}_{2} \xrightarrow{}_{1} \xrightarrow{}_{2} \xrightarrow{\phantom{$$

and there exist

a 2-CT subcategory

a 3-CT subcategory

a 6-CT subcategory

L = 2 and $L \ge 3$

Example for L = 2

The Auslander–Reiten quiver of $\mathbf{k}A_7/J^2$ is

$$\xrightarrow{6}_{7} \xrightarrow{6}_{5} \xrightarrow{5}_{5} \xrightarrow{4}_{5} \xrightarrow{3}_{4} \xrightarrow{3}_{4} \xrightarrow{2}_{3} \xrightarrow{2}_{2} \xrightarrow{1}_{2} \xrightarrow{1}_{2} \xrightarrow{1}_{3} \xrightarrow{1}_{5} \xrightarrow$$

and there exist

$$(7)^{1} (1)$$

a 2-CT subcategory

a 3-CT subcategory

a 6-CT subcategory

In general, if L = 2, there is no restriction on the parity of n.

Two ingredients:

Two ingredients:

• the shape of Q, and

Two ingredients:

- $\bullet\,$ the shape of Q, and
- the length of certain paths in Q.

Two ingredients:

- $\bullet\,$ the shape of Q, and
- the length of certain paths in Q.

Remark

The case $Q = \tilde{A}_m$ and the case L = 2 are special.

Two ingredients:

- the shape of Q, and
- the length of certain paths in Q.

Remark

The case $Q = \tilde{A}_m$ and the case L = 2 are special.

Theorem [Darpö–Iyama]

Let $\Lambda = \mathbf{k}\tilde{A}_m/J^L$. There exists an *n*-CT subcategory of mod Λ if and only if one of the following two conditions holds:

(i)
$$\left(2\left(\frac{n-1}{2}L+1\right)\right) \mid 2(m+1)$$
, or

(ii) $\left(2\left(\frac{n-1}{2}L+1\right)\right) \mid t(m+1)$, where $t = \gcd(n+1, 2(L-1))$.

There are many different $n\text{-}\mathsf{CT}$ subcategories, all of the form $\operatorname{add}(M)$ for some $M\in\operatorname{\mathsf{mod}}\Lambda.$

For a vertex \boldsymbol{v} in \boldsymbol{Q} we denote

- $\delta^{-}(v)$:=number of arrows terminating at v (incoming degree)
- $\delta^+(v)$:=number of arrows starting at v (outgoing degree)
- $\delta(v) \coloneqq (\delta^-(v), \delta^+(v))$ (degree)

Shape of \boldsymbol{Q}

Proposition [Oppermann-V]

Let $\Lambda = \mathbf{k}Q/J^L$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$. Then for every $v \in Q_0$ we have

 $\delta(v) \in \{(0,0), (0,1), (1,0), (1,1), (1,2), (2,1), (2,2)\}.$

Moreover, if $L \ge 3$ or $n \ge 3$, then $\delta(v) \ne (2,2)$.

Shape of \boldsymbol{Q}

Proposition [Oppermann-V]

Let $\Lambda = \mathbf{k}Q/J^L$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$. Then for every $v \in Q_0$ we have

 $\delta(v) \in \{(0,0), (0,1), (1,0), (1,1), (1,2), (2,1), (2,2)\}.$

Moreover, if $L \ge 3$ or $n \ge 3$, then $\delta(v) \ne (2,2)$.

Proof sketch

Assume that there are at least 3 arrows terminating at v. Show that $\Omega(I(v))$ has at least two indecomposable summands using results of Huisgen-Zimmermann.

Shape of \boldsymbol{Q}

Definition

Let Q be a quiver, let $n \ge 2$ and let $L \ge 2$. We say that Q is (n, L)-pre-admissible if

- (i) every vertex of Q has at most two incoming and at most two outgoing arrows,
- (ii) no vertex of ${\boldsymbol{Q}}$ has degree (0,2) or (2,0), and
- (iii) if $L \ge 3$ or $n \ge 3$, then no vertex of Q has degree (2,2).

Flow paths

Definition

Let $k \geq 2$. A *k*-flow path **v** in Q is a path

$$\mathbf{v} = v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_k$$

such that

- $\delta(v_1) \neq (1,1)$,
- $\delta(v_k) \neq (1,1)$, and
- $\delta(v_i) = (1, 1)$ for all 1 < i < k.

We define the degree of **v** to be $\delta(\mathbf{v}) = (\delta^{-}(\mathbf{v}), \delta^{+}(\mathbf{v})) \coloneqq (\delta^{-}(v_1), \delta^{+}(v_k)).$

Flow paths

Definition

Let $k \geq 2$. A *k*-flow path **v** in Q is a path

$$\mathbf{v} = v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_k$$

such that

- $\delta(v_1) \neq (1,1)$,
- $\delta(v_k) \neq (1,1)$, and
- $\delta(v_i) = (1, 1)$ for all 1 < i < k.

We define the degree of **v** to be $\delta(\mathbf{v}) = (\delta^{-}(\mathbf{v}), \delta^{+}(\mathbf{v})) \coloneqq (\delta^{-}(v_1), \delta^{+}(v_k)).$

Note: if Q is (n,L)-pre-admissible, then there exists a k-flow path if and only if $Q\neq A_1$ and $Q\neq \tilde{A}_m.$

Let Q be (n, L)-pre-admissible and let \mathbf{v} be a k-flow path in Q. We define $r(\mathbf{v}, L)$ depending on the degrees of v_1 and v_2 as in the following table:

$\begin{array}{ c c c } \delta(v_k) \\ \delta(v_1) \end{array}$	(1,0)	(2,1)	(1,2)	(2,2)
(0,1)	$\frac{L}{2}$	1	0	1
(1,2)	1	$2 - \frac{L}{2}$	$1 - \frac{L}{2}$	1
(2,1)	0	$1 - \frac{L}{2}$	$-\frac{L}{2}$	0
(2,2)	1	1	0	1

Let Q be (n, L)-pre-admissible and let \mathbf{v} be a k-flow path in Q. We define $r(\mathbf{v}, L)$ depending on the degrees of v_1 and v_2 as in the following table:

$\frac{\delta(v_k)}{\delta(v_1)}$	(1,0)	(2,1)	(1,2)	(2,2)
(0,1)	$\frac{L}{2}$	1	0	1
(1,2)	1	$2 - \frac{L}{2}$	$1 - \frac{L}{2}$	1
(2,1)	0	$1 - \frac{L}{2}$	$-\frac{L}{2}$	0
(2,2)	1	1	0	1

Example

Let **v** be a k-flow path with $\delta(v_1) = (1,2)$ and $\delta(v_k) = (2,1)$. Then $r(\mathbf{v},4) = 2 - \frac{4}{2} = 0$.

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$k = (p_{\mathbf{V}} + 1) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{V}, L)$$

and one of the following conditions holds:

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$k = \left(p_{\mathbf{V}} + 1\right) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{V}, L)$$

and one of the following conditions holds:

(i) L = 2,

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$k = \left(p_{\mathbf{V}} + 1\right) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{V}, L)$$

and one of the following conditions holds:

(i) L = 2, (ii) $L \ge 3$, n and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v}) = (0,0)$,

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$k = \left(p_{\mathbf{V}} + 1\right) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{V}, L)$$

and one of the following conditions holds:

(i)
$$L = 2$$
,
(ii) $L \ge 3$, n and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v}) = (0,0)$,
(iii) $L \ge 3$, n and $p_{\mathbf{v}}$ are both even, $n + p_{\mathbf{v}} > 2$ and $\delta(\mathbf{v}) \in \{(1,1), (1,2), (2,1), (2,2)\}$, or

Definition

Let Q be an (n, L)-pre-admissible quiver and \mathbf{v} be a k-flow path in Q. We say that \mathbf{v} is (n, L)-admissible if there exists an integer $p_{\mathbf{v}} \geq 0$ such that

$$k = (p_{\mathbf{V}} + 1) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{V}, L)$$

and one of the following conditions holds:

(i) L = 2, (ii) $L \ge 3$, n and $p_{\mathbf{v}}$ are both even and $\delta(\mathbf{v}) = (0,0)$, (iii) $L \ge 3$, n and $p_{\mathbf{v}}$ are both even, $n + p_{\mathbf{v}} > 2$ and $\delta(\mathbf{v}) \in \{(1,1), (1,2), (2,1), (2,2)\}$, or

(iv) $L \ge 3$, n and $p_{\mathbf{v}}$ are not both even and $\delta(\mathbf{v}) \in \{(0,1), (0,2), (1,0), (2,0)\}.$

Proposition [Oppermann–V]

Let $\Lambda = \mathbf{k}Q/J^L$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$. Then every flow path in Q is (n, L)-admissible.

Proposition [Oppermann–V]

Let $\Lambda = \mathbf{k}Q/J^L$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$. Then every flow path in Q is (n, L)-admissible.

To prove this, first we show the following.

Proposition [Oppermann–V]

Let $\Lambda = \mathbf{k}Q/J^L$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \text{mod } \Lambda$. Then every flow path in Q is (n, L)-admissible.

To prove this, first we show the following.

Lemma [Oppermann–V]

Let $\Lambda = \mathbf{k}Q/J^L$ and let $L \ge 3$. Assume there exists an *n*-CT subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$. If **v** is a *k*-flow path in Q, then $k \ge L + 1$.

Now let

$$\mathbf{v} = v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_k$$

be a k-flow path in Q.

Now let

$$\mathbf{v} = v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_k$$

be a k-flow path in Q.

Then

 $\delta(v_1) \in \{(0,1), (1,2), (2,1), (2,2)\} \text{ and } \delta(v_k) \in \{(1,0), (2,1), (1,2), (2,2)\},$ and $k \ge L+1.$

Now let

$$\mathbf{v} = v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{k-2}} v_{k-1} \xrightarrow{\alpha_{k-1}} v_k$$

be a k-flow path in Q.

Then

 $\delta(v_1) \in \{(0,1), (1,2), (2,1), (2,2)\}$ and $\delta(v_k) \in \{(1,0), (2,1), (1,2), (2,2)\},\$

and $k \ge L + 1$.

We want to define L-1 indecomposable injective non-projective $\Lambda\text{-modules}$ which depend on $\delta(v_1).$

Case $\delta(v_1) = (0, 1)$: then we have

$$v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_k$$

and we set

Case $\delta(v_1) = (0, 1)$: then we have

$$v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_k$$

and we set

 $I_{\mathbf{V}}(1) = I(v_1)$

Case $\delta(v_1) = (0, 1)$: then we have

$$v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_k$$

and we set

$$I_{\mathbf{v}}(1) = I(v_1), I_{\mathbf{v}}(2) = I(v_2)$$

Case $\delta(v_1) = (0, 1)$: then we have

$$v_1 \xrightarrow{\alpha_1} v_2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_{L-2}} v_{L-1} \xrightarrow{\alpha_{L-1}} \cdots \xrightarrow{\alpha_{k-1}} v_k$$

and we set

$$I_{\mathbf{v}}(1) = I(v_1), I_{\mathbf{v}}(2) = I(v_2), \dots, I_{\mathbf{v}}(L-1) = I(v_{L-1}).$$
Case $\delta(v_1) \in \{(1,2), (2,2)\}$: then we have

Case $\delta(v_1) \in \{(1,2), (2,2)\}$: then we have

and we set

 $I_{\mathbf{v}}(1) = I(u_2)$

Case $\delta(v_1) \in \{(1,2), (2,2)\}$: then we have

$$I_{\mathbf{v}}(1) = I(u_2), I_{\mathbf{v}}(2) = I(u_3)$$

Case $\delta(v_1) \in \{(1,2), (2,2)\}$: then we have

$$I_{\mathbf{v}}(1) = I(u_2), I_{\mathbf{v}}(2) = I(u_3), \dots, I_{\mathbf{v}}(L-1) = I(u_L).$$

Case $\delta(v_1) = (2,1)$: then we have

Case $\delta(v_1) = (2,1)$: then we have

and we set

 $I_{\mathbf{v}}(1) = I(v_1)$

Case $\delta(v_1) = (2,1)$: then we have

$$I_{\mathbf{v}}(1) = I(v_1), I_{\mathbf{v}}(2) = I(v_2)$$

Case $\delta(v_1) = (2,1)$: then we have

$$I_{\mathbf{v}}(1) = I(v_1), I_{\mathbf{v}}(2) = I(v_2), \dots, I_{\mathbf{v}}(L-1) = I(v_{L-1}).$$

Case $\delta(v_1) = (2,1)$: then we have

and we set

$$I_{\mathbf{v}}(1) = I(v_1), I_{\mathbf{v}}(2) = I(v_2), \dots, I_{\mathbf{v}}(L-1) = I(v_{L-1}).$$

Dually we define $P_{\mathbf{v}}(i)$ for $1 \leq i \leq L-1$.

Length of flow paths

Now to show that a k-flow path **v** must be (n, L)-admissible, we compute

 $\tau^p_n(I_{\mathbf{V}}(i))$

for $1 \leq i \leq L-1$ and $p \geq 0$.

Length of flow paths

Now to show that a k-flow path \mathbf{v} must be (n, L)-admissible, we compute

 $au_n^p(I_{\mathbf{V}}(i))$

for $1 \le i \le L - 1$ and $p \ge 0$.

A case by case analysis shows that the existence of an $n\text{-}\mathsf{CT}$ subcategory, implies that there exists $p_{\mathbf{V}}$ such that

 $\tau_n^{p_{\mathbf{v}}+1}(I_{\mathbf{v}}(i)) \cong P_{\mathbf{v}}(L-i).$

Length of flow paths

Now to show that a k-flow path \mathbf{v} must be (n, L)-admissible, we compute

 $au_n^p(I_{\mathbf{V}}(i))$

for $1 \le i \le L - 1$ and $p \ge 0$.

A case by case analysis shows that the existence of an $n\text{-}\mathsf{CT}$ subcategory, implies that there exists $p_{\mathbf{V}}$ such that

$$\tau_n^{p_{\mathbf{v}}+1}(I_{\mathbf{v}}(i)) \cong P_{\mathbf{v}}(L-i).$$

An explicit computation of the above isomorphism gives the condition on the length of \boldsymbol{v} .

Definition

Let $n \ge 2$ and $L \ge 2$. Let Q be an (n, L)-pre-admissible quiver. We say that Q is (n, L)-admissible if one of the following conditions holds: (a) $Q = \tilde{A}_m$ and $\left(2\left(\frac{n-1}{2}L+1\right)\right) \mid 2(m+1)$, or

(b) $Q = \tilde{A}_m$ and $\left(2\left(\frac{n-1}{2}L+1\right)\right) \mid t(m+1)$, where $t = \gcd(n+1, 2(L-1))$, or (c) $Q \neq \tilde{A}_m$ and every k-flow path **v** in Q is (n, L)-admissible.

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda={\bf k}Q/J^L$ admits an $n\text{-}{\rm CT}$ subcategory if and only if Q is an $(n,L)\text{-}{\rm admissible}$ quiver.

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda = \mathbf{k}Q/J^L$ admits an *n*-CT subcategory if and only if Q is an (n, L)-admissible quiver. The *n*-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$.

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda = \mathbf{k}Q/J^L$ admits an *n*-CT subcategory if and only if Q is an (n, L)-admissible quiver. The *n*-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$. It is unique if and only if $Q \neq \tilde{A}_m$.

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda = \mathbf{k}Q/J^L$ admits an *n*-CT subcategory if and only if Q is an (n, L)-admissible quiver. The *n*-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$. It is unique if and only if $Q \neq \tilde{A}_m$.

Proof sketch

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda = \mathbf{k}Q/J^L$ admits an *n*-CT subcategory if and only if Q is an (n, L)-admissible quiver. The *n*-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$. It is unique if and only if $Q \neq \tilde{A}_m$.

Proof sketch

For $Q \neq \tilde{A}_m$: (\implies) has been motivated.

Theorem [case $Q = \tilde{A}_m$ Darpö–lyama, case L = 2 V, case $L \ge 3$ Oppermann–V]

The algebra $\Lambda = \mathbf{k}Q/J^L$ admits an *n*-CT subcategory if and only if Q is an (n, L)-admissible quiver. The *n*-CT subcategory is always of the form $\operatorname{add}(M)$ for some $M \in \operatorname{mod} \Lambda$. It is unique if and only if $Q \neq \tilde{A}_m$.

Proof sketch

For $Q \neq \tilde{A}_m$: (\implies) has been motivated. For the other direction, we first show existence of an *n*-CT in a universal cover of Q via a direct computation. Then we use a result of Darpö–Iyama to induce an *n*-cluster tilting subcategory in mod Λ .

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

(i) There exist no parallel arrows in Q.

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

- (i) There exist no parallel arrows in Q.
- (ii) If L = 2, then $\mathbf{k}Q/J^2$ is a representation-finite string algebra.

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

(i) There exist no parallel arrows in Q.

(ii) If L = 2, then $\mathbf{k}Q/J^2$ is a representation-finite string algebra.

(iii) Indecomposable modules are of two forms:

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

(i) There exist no parallel arrows in Q.

(ii) If L = 2, then $\mathbf{k}Q/J^2$ is a representation-finite string algebra.

- (iii) Indecomposable modules are of two forms:
 - either they are supported only on vertices with degree (1,1) (interval modules): $0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0$

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

(i) There exist no parallel arrows in Q.

(ii) If L = 2, then $\mathbf{k}Q/J^2$ is a representation-finite string algebra.

- (iii) Indecomposable modules are of two forms:
 - either they are supported only on vertices with degree (1, 1) (interval modules): $0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0$, or
 - \bullet they are supported in exactly one vertex with degree different than (1,1).

Proposition

Let $Q \neq \tilde{A}_m$ be an (n, L)-admissible quiver.

(i) There exist no parallel arrows in Q.

(ii) If L = 2, then $\mathbf{k}Q/J^2$ is a representation-finite string algebra.

- (iii) Indecomposable modules are of two forms:
 - either they are supported only on vertices with degree (1,1) (interval modules): $0 \xrightarrow{0} \mathbf{k} \xrightarrow{\simeq} \mathbf{k} \xrightarrow{\simeq} \cdots \xrightarrow{\simeq} \mathbf{k} \xrightarrow{0} 0$, or
 - they are supported in exactly one vertex with degree different than (1,1). If that vertex has degree (2,1) then an indecomposable has the form

$$0 \xrightarrow{\longrightarrow} M_{v_{2-L}} \xrightarrow{\longrightarrow} \dots \xrightarrow{\longrightarrow} M_{v_0} \xrightarrow{\longrightarrow} M_{v_1} \xrightarrow{\longrightarrow} M_{v_2} \xrightarrow{\longrightarrow} \dots \xrightarrow{\longrightarrow} M_{v_L} \xrightarrow{\longrightarrow} 0$$

$$0 \xrightarrow{\longrightarrow} M_{u_{2-L}} \xrightarrow{\longleftarrow} \dots \xrightarrow{\longrightarrow} M_{u_0}$$

and similarly in other cases.

Assume $Q \neq \tilde{A}_m$ is (n, L)-admissible. To find an *n*-CT module M:

Assume $Q \neq \tilde{A}_m$ is (n, L)-admissible. To find an *n*-CT module M:

• All projective and all injective indecomposable modules are direct summands of M.

Assume $Q \neq \tilde{A}_m$ is (n, L)-admissible. To find an *n*-CT module M:

- All projective and all injective indecomposable modules are direct summands of M.
- If **v** is a k-flow path in Q, then

$$k = (p_{\mathbf{v}} + 1) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{v}, L)$$

and there are exactly $p_{\mathbf{v}}(L-1)$ interval modules supported in \mathbf{v} which are direct summands of M.

Assume $Q \neq \tilde{A}_m$ is (n, L)-admissible. To find an *n*-CT module M:

- All projective and all injective indecomposable modules are direct summands of M.
- If **v** is a k-flow path in Q, then

$$k = (p_{\mathbf{v}} + 1) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{v}, L)$$

and there are exactly $p_{\mathbf{V}}(L-1)$ interval modules supported in \mathbf{V} which are direct summands of M. If $L \geq 3$, then these interval modules lie in diagonals as in the case $Q = A_m$ and this is where the parity conditions come from.

Assume $Q \neq \tilde{A}_m$ is (n, L)-admissible. To find an *n*-CT module M:

- All projective and all injective indecomposable modules are direct summands of M.
- If **v** is a k-flow path in Q, then

$$k = (p_{\mathbf{v}} + 1) \left(\frac{n-1}{2}L + 1\right) + r(\mathbf{v}, L)$$

and there are exactly $p_{\mathbf{V}}(L-1)$ interval modules supported in \mathbf{V} which are direct summands of M. If $L \geq 3$, then these interval modules lie in diagonals as in the case $Q = A_m$ and this is where the parity conditions come from.

• These are all the direct summands of M.

Then Q is (4,4)-admissible. Hence the algebra $\Lambda={\bf k}Q/J^4$ admits a unique 4-CT subcategory ${\cal C}.$

Then Q is (4,4)-admissible. Hence the algebra $\Lambda=\mathbf{k}Q/J^4$ admits a unique 4-CT subcategory $\mathcal{C}.$

Moreover, $C = \operatorname{add}(M)$ where M is the direct sum of the projective modules, the injective modules, and the interval modules (13), (13, 14), (13, 14, 15), (19, 20, 21), (20, 21), (21).

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1),\,\,(1,0),\,\,(1,2),\,\,{\rm or}\,\,(2,1).$

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1),\,\,(1,0),\,\,(1,2),$ or $(2,1). {\rm For \ example}$

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1),\,\,(1,0),\,\,(1,2),$ or $(2,1). {\rm For \ example}$

Then extend each arrow in this graph to an (n, L)-admissible flow path.

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1),\,\,(1,0),\,\,(1,2),$ or $(2,1). {\rm For \ example}$

Then extend each arrow in this graph to an (n, L)-admissible flow path.In this example, we may pick n = 2 and $p_{\mathbf{v}} = 2$ for all arrows to obtain the (n, L)-admissible quiver

How to find examples

It is easy to find (n, L)-admissible quivers such that $\Lambda = \mathbf{k}Q/J^L$ is a wild algebra and admits an *n*-cluster tilting subcategory.

We first draw a directed graph where the degree of each vertex has degree $(0,1),\,\,(1,0),\,\,(1,2),$ or $(2,1). {\rm For \ example}$

Then extend each arrow in this graph to an (n, L)-admissible flow path.In this example, we may pick n = 2 and $p_{\mathbf{v}} = 2$ for all arrows to obtain the (n, L)-admissible quiver

Picking L large enough, gives a wild algebra.

$n\mathbb{Z}$ -cluster tilting subcategories

Definition [lyama-Jasso]

An *n*-cluster tilting subcategory $C \subseteq \text{mod } \Lambda$ is called $n\mathbb{Z}$ -cluster tilting if it is closed under Ω^n .

$n\mathbb{Z}$ -cluster tilting subcategories

Definition [lyama-Jasso]

An *n*-cluster tilting subcategory $C \subseteq \text{mod } \Lambda$ is called $n\mathbb{Z}$ -cluster tilting if it is closed under Ω^n .

Theorem [Herschend-Kvamme-V, Oppermann-V]

Let $\Lambda = \mathbf{k}Q/J^L$. Then Λ admits an $n\mathbb{Z}$ -cluster tilting subcategory if and only if one of the following conditions holds:

(i)
$$Q = A_m$$
 and $L = 2$ or $L \mid (m-1)$, and $n = 2\frac{m-1}{L}$, or

(ii) $Q = \tilde{A}_m$ and L = 2 or L = n + 2, and $n \mid (m + 1)$.

$n\mathbb{Z}$ -cluster tilting subcategories

Definition [lyama-Jasso]

An *n*-cluster tilting subcategory $C \subseteq \text{mod } \Lambda$ is called $n\mathbb{Z}$ -cluster tilting if it is closed under Ω^n .

Theorem [Herschend–Kvamme-V, Oppermann-V]

Let $\Lambda = \mathbf{k}Q/J^L$. Then Λ admits an $n\mathbb{Z}$ -cluster tilting subcategory if and only if one of the following conditions holds:

(i)
$$Q = A_m$$
 and $L = 2$ or $L \mid (m - 1)$, and $n = 2\frac{m-1}{L}$, or

(ii)
$$Q = \tilde{A}_m$$
 and $L = 2$ or $L = n + 2$, and $n \mid (m + 1)$.

Corollary [Sandøy–Thibault]

Let $\Lambda = \mathbf{k}Q/J^L$ and $d = \mathrm{gl.\,dim.}(\Lambda)$. There exists a d-CT subcategory of mod Λ if and only if $Q = A_m$ and either of L = 2 or $L \mid (m - 1)$ holds.

Theorem [V]

Let $\Lambda={\bf k}Q/J^2$ and let N be the largest integer for which Q is (N,2)-admissible. Then the following hold.

Theorem [V]

Let $\Lambda={\bf k}Q/J^2$ and let N be the largest integer for which Q is (N,2)-admissible. Then the following hold.

(a) For each divisor n of N, the quiver Q is (n, 2)-admissible. In particular, there exists an n-cluster tilting subcategory $C_n \subseteq \text{mod } \Lambda$.

Theorem [V]

Let $\Lambda={\bf k}Q/J^2$ and let N be the largest integer for which Q is (N,2)-admissible. Then the following hold.

- (a) For each divisor n of N, the quiver Q is (n, 2)-admissible. In particular, there exists an n-cluster tilting subcategory $C_n \subseteq \text{mod } \Lambda$.
- (b) The set $\{C_n \mid n \text{ is a divisor of } N\}$ is a complete lattice with respect to inclusion isomorphic to the opposite of the lattice of divisors of N.

Example

Let Q be the quiver

$$\begin{array}{c} 23 \leftarrow 22 \leftarrow 21 \leftarrow 20 \leftarrow 19 \\ \uparrow \\ 1 \xrightarrow{\checkmark} 14 \rightarrow 15 \rightarrow 16 \rightarrow 17 \rightarrow 18 \\ \downarrow \\ 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13. \end{array}$$

Example

Let ${\boldsymbol{Q}}$ be the quiver

The largest N for which Q is (N, 2)-admissible is N = 12.

Example

The Auslander–Reiten quiver of $\Lambda = \mathbf{k}Q/J^2$ is

$$13 \xrightarrow{12}{13} \underbrace{12}{12} \underbrace{11}{12} \underbrace$$

where the simple module S(1) appears twice. Then we have

$$\begin{split} \mathcal{C}_1 &= \text{mod}\,\Lambda, & \mathcal{C}_2 &= \text{add}\{\Lambda, \, 11\,, \,9\,, \,7\,, \,5\,, \,3\,, \frac{1}{14}\,, \,23\,, \,21\,, \,19\,, \,17\,, \,15\,, \frac{1}{2}\}, \\ \mathcal{C}_3 &= \text{add}\{\Lambda, \,10\,, \,7\,, \,4\,, \,\frac{1}{14}\,, \,22\,, \,19\,, \,16\,, \frac{1}{2}\,\}, & \mathcal{C}_4 &= \text{add}\{\Lambda, \,9\,, \,5\,, \,\frac{1}{14}\,, \,21\,, \,17\,, \,\frac{1}{2}\,\}, \\ \mathcal{C}_6 &= \text{add}\{\Lambda, \,7\,, \,\frac{1}{14}\,, \,19\,, \,\frac{1}{2}\,\}, & \mathcal{C}_{12} &= \text{add}\{\Lambda, \,\frac{1}{14}\,, \,\frac{1}{2}\,\}, \end{split}$$

and C_n is an *n*-cluster tilting subcategory of mod Λ .

of inclusions of *n*-cluster tilting subcategories of $\operatorname{mod} \Lambda$.

Thank You!