Classifying torsion classes of Noetherian algebras (joint work with Osamu Iyama)

Yuta Kimura

The University of Tokyo

2022.3.17

- R : commutative Noetherian ring
- Λ : Noetherian R-algebra i.e. ${}_R\Lambda$ is a finitely generated R-module
- $\bullet \mbox{ mod } \Lambda$: the category of finitely generated left $\Lambda\mbox{-modules}$
- $\Lambda = R \Rightarrow \Lambda$ is a commutative Noetherian ring
- R is a field $\Rightarrow \Lambda$ is a finite dimensional R-algebra

Goal

Classify torsion (free) classes, Serre subcategories of mod Λ .

Let $\mathcal{A}=\mathsf{mod}\,\Lambda$ and $\mathcal{C}\subset\mathcal{A}$ a subcategory.

- C is closed under <u>extensions</u> : \Leftrightarrow for a short exact sequence $0 \to X \to Y \to Z \to 0$ in A, if $X, Z \in C$, then $Y \in C$.
- \mathcal{C} is closed under quotients : $\Leftrightarrow \quad \lceil Y \in \mathcal{C}, \ Y \twoheadrightarrow Z \in \mathcal{A} \Rightarrow Z \in \mathcal{C} \
 floor$
- \mathcal{C} is closed under <u>submodules</u> : $\Leftrightarrow \quad \lceil Y \in \mathcal{C}, \ X \rightarrowtail Y \in \mathcal{A} \Rightarrow X \in \mathcal{C} \sqcup$

Definition

- (1) C : torsion class : \Leftrightarrow closed under quotients and extensions.
- (2) C : torsionfree class : \Leftrightarrow closed under submodules and extensions.
- (3) C : Serre subcategory : $\Leftrightarrow C$ is a torsion class and a torsionfreee class.

$$\begin{split} & \text{tors}\,\Lambda = \{\text{torsion classes of}\,\mathcal{A}\}, \quad \text{torf}\,\Lambda = \{\text{torsionfree classes of}\,\mathcal{A}\}\\ & \text{serre}\,\Lambda = \{\text{Serre subcategories of}\,\mathcal{A}\} \end{split}$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

- Spec $R = \{ \text{prime ideals of } R \}$
- Supp $M = \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \neq 0 \}$ for $M \in \operatorname{mod} R$
- $\mathcal{W} \subseteq \operatorname{Spec} R$: specialization closed : $\Leftrightarrow \quad \lceil \mathfrak{p} \in \mathcal{W}, \quad \mathfrak{p} \subseteq \mathfrak{q} \in \operatorname{Spec} R \Rightarrow \mathfrak{q} \in \mathcal{W} \rfloor$

Theorem (Gabriel '62)

For a subcategory C of mod R, let $\operatorname{Supp} C := \bigcup_{M \in C} \operatorname{Supp} M$. Then this induces an isomorphism of posets:

serre $R \xrightarrow{\text{Supp}(-)} \{\text{specialization closed subsets of Spec } R\}$

For $M \in \operatorname{mod} R$, $\operatorname{Ass} M := \{ \mathfrak{p} \in \operatorname{Spec} R \mid \exists R/\mathfrak{p} \hookrightarrow M \}.$

Theorem (Takahashi '08)

For a subcategory $\mathcal C$ of mod R, let $\operatorname{Ass} \mathcal C:=\bigcup_{M\in \mathcal C}\operatorname{Ass} M.$ Then this induces an isomorphism of posets:

torf
$$R \xrightarrow{\mathsf{Ass}(-)} \mathsf{P}(\mathsf{Spec}\, R) := \{\mathsf{subsets of } \mathsf{Spec}\, R\}.$$

Theorem (Stanley-Wang '11)

serre R = tors R holds for a commutative Noetherian ring R.

If Λ is a finite dimensional algebra over a field

 $M\in \operatorname{mod}\Lambda$

$$\begin{aligned} \mathsf{Fac}\, M &:= \{ X \in \mathsf{mod}\,\Lambda \mid {}^{\exists} M^{\oplus \ell} \twoheadrightarrow X, \; {}^{\exists} \ell \geq 0 \} \\ \mathsf{f}\text{-tors}\,\Lambda &:= \{ \mathcal{T} \in \mathsf{tors}\,\Lambda \mid \mathcal{T} \text{ is functorially finite in mod}\,\Lambda \} \\ &= \{ \mathcal{T} \in \mathsf{tors}\,\Lambda \mid {}^{\exists} M \in \mathsf{mod}\,\Lambda \text{ s.t. } \mathsf{Fac}\,M = \mathcal{T} \} \end{aligned}$$

Results for tors Λ and f-tors Λ

(a) [Adachi-Iyama-Reiten '14]

f-tors $\Lambda \stackrel{1-1}{\longleftrightarrow}$ {isoclasses of basic support τ -tilting Λ -modules}

(b) [Demonet-Iyama-Jasso '19]

 $|\operatorname{tors}\Lambda|<\infty\Leftrightarrow |\operatorname{f-tors}\Lambda|<\infty\Leftrightarrow\operatorname{tors}\Lambda=\operatorname{f-tors}\Lambda$

(c) [Ingalls-Thomas, Mizuno, Chan-Demonet,...]

For some classes of algebras, classification results of tors Λ and f-tors $\Lambda.$

- Path algebras of Dynkin quivers.
- Preprojective algebras of Dynkin type.
- Gentle algebras

• For $\mathfrak{p} \in \operatorname{Spec} R$, let

$$\Lambda_{\mathfrak{p}} := R_{\mathfrak{p}} \otimes_R \Lambda.$$

 $\Lambda_{\mathfrak{p}}$ is a Noetherian $R_{\mathfrak{p}}$ -algebra.

• For $\mathfrak{p} \in \operatorname{Spec} R$, let $k_{\mathfrak{p}} = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ and

$$k_{\mathfrak{p}}\Lambda := k_{\mathfrak{p}} \otimes_R \Lambda.$$

 $k_{\mathfrak{p}}\Lambda$ is a finite dimensional $k_{\mathfrak{p}}$ -algebra. We have mod $k_{\mathfrak{p}}\Lambda \subseteq \operatorname{mod} \Lambda_{\mathfrak{p}}$.

Today

Classify tors Λ , torf Λ and serre Λ via tors $(k_{\mathfrak{p}}\Lambda)$, torf $(k_{\mathfrak{p}}\Lambda)$ and serre $(k_{\mathfrak{p}}\Lambda)$.

For a subcategory $\mathcal{C} \subseteq \operatorname{mod} \Lambda$ and $\mathfrak{p} \in \operatorname{Spec} R$, let

$$\mathcal{C}_{\mathfrak{p}} := \{ M_{\mathfrak{p}} \mid M \in \mathcal{C} \} \subseteq \operatorname{mod} \Lambda_{\mathfrak{p}}.$$

Lemma

 $\begin{array}{ll} \text{(a)} & \mathcal{C} \in \operatorname{tors} \Lambda \Longrightarrow \mathcal{C}_{\mathfrak{p}} \in \operatorname{tors} \Lambda_{\mathfrak{p}} \\ \text{(b)} & \mathcal{C} \in \operatorname{torf} \Lambda \Longrightarrow \mathcal{C}_{\mathfrak{p}} \in \operatorname{torf} \Lambda_{\mathfrak{p}} \\ \text{(c)} & \mathcal{C} \in \operatorname{serre} \Lambda \Longrightarrow \mathcal{C}_{\mathfrak{p}} \in \operatorname{serre} \Lambda_{\mathfrak{p}} \end{array}$

An assignment $\mathcal{C} \mapsto \mathcal{C}_{\mathfrak{p}} \cap \operatorname{mod} k_{\mathfrak{p}} \Lambda$ gives three maps

$$\operatorname{tors} \Lambda \longrightarrow \operatorname{tors}(k_{\mathfrak{p}}\Lambda), \quad \operatorname{torf} \Lambda \longrightarrow \operatorname{torf}(k_{\mathfrak{p}}\Lambda), \quad \operatorname{serre} \Lambda \longrightarrow \operatorname{serre}(k_{\mathfrak{p}}\Lambda)$$

Definition

$$\begin{split} \mathbb{T}_R(\Lambda) &:= \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{tors}(k_\mathfrak{p}\Lambda), \qquad \mathbb{F}_R(\Lambda) := \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{torf}(k_\mathfrak{p}\Lambda) \\ \mathbb{S}_R(\Lambda) &:= \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{serre}(k_\mathfrak{p}\Lambda) \end{split}$$

Definition

For a subcategory ${\mathcal C}$ of $\operatorname{mod}\Lambda,$ let

$$\Phi(\mathcal{C}) := \{\mathcal{C}_{\mathfrak{p}} \cap \mathsf{mod}\, k_{\mathfrak{p}}\Lambda\}_{\mathfrak{p}\in\mathsf{Spec}\,R}$$

By restricting $\Phi,$ we have the following three maps

$$\operatorname{tors} \Lambda \xrightarrow{\Phi_{\mathbf{t}}} \mathbb{T}_R(\Lambda), \quad \operatorname{torf} \Lambda \xrightarrow{\Phi_{\mathbf{f}}} \mathbb{F}_R(\Lambda), \quad \operatorname{serre} \Lambda \xrightarrow{\Phi_{\mathbf{s}}} \mathbb{S}_R(\Lambda)$$

$\mathsf{Maps}\ \Psi$

For
$$\mathcal{X} = {\mathcal{X}^{\mathfrak{p}}}_{\mathfrak{p}} \in \mathbb{T}_{R}(\Lambda)$$
, let
 $\Psi_{t}(\mathcal{X}) := {M \in \text{mod } \Lambda \mid k_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} M \in \mathcal{X}^{\mathfrak{p}}, \forall \mathfrak{p} \in \text{Spec } R}.$
For $\mathcal{Y} = {\mathcal{Y}^{\mathfrak{p}}}_{\mathfrak{p}} \in \mathbb{F}_{R}(\Lambda)$, let
 $\widetilde{\mathcal{Y}^{\mathfrak{p}}} = {M \in \text{mod } \Lambda \mid M_{\mathfrak{p}} \in \mathcal{Y}^{\mathfrak{p}}, \operatorname{Ass}_{R} M \subseteq {\mathfrak{p}}}.$
 $\Psi_{f}(\mathcal{Y}) := \operatorname{Filt}\left(\widetilde{\mathcal{Y}^{\mathfrak{p}}} \middle| \mathfrak{p} \in \operatorname{Spec} R\right) \subset \operatorname{mod} \Lambda.$

Proposition

We have three maps

$$\mathbb{T}_R(\Lambda) \xrightarrow{\Psi_{\mathrm{t}}} \operatorname{tors} \Lambda, \quad \mathbb{F}_R(\Lambda) \xrightarrow{\Psi_{\mathrm{f}}} \operatorname{torf} \Lambda, \quad \mathbb{S}_R(\Lambda) \xrightarrow{\Psi_{\mathrm{s}} = \Psi_{\mathrm{t}}|_{\mathbb{S}_R(\Lambda)}} \operatorname{serre} \Lambda$$

Theorem 1 (Iyama-Kimura)

(a) Φ_f is an isomorphism of posets with an inverse Ψ_f .

(b)
$$\Psi_t \circ \Phi_t = id_{\mathsf{tors}\,\Lambda}$$
 and $\Psi_s \circ \Phi_s = id_{\mathsf{serre}\,\Lambda}$ hold.

(c) $\Phi_{\rm t}$ and $\Phi_{\rm s}$ are embeddings of posets.

$$serre \Lambda \xrightarrow{(-)^{\perp}} tors \Lambda \xrightarrow{(-)^{\perp}} torf \Lambda$$

$$\Psi_{s} \uparrow [\Phi_{s} \qquad \Psi_{t} \uparrow [\Phi_{t} \qquad \Psi_{f} \uparrow] \downarrow \Phi_{f}$$

$$\mathbb{S}_{R}(\Lambda) \xrightarrow{(-)^{\perp}} \mathbb{F}_{R}(\Lambda) \xrightarrow{(-)^{\perp}} \mathbb{F}_{R}(\Lambda)$$

where $\mathcal{T}^{\perp} = \{ X \in \text{mod } \Lambda \mid \text{Hom}_{\Lambda}(T, X) = 0, \forall T \in \mathcal{T} \}.$

Corollary : $\Lambda_{\mathfrak{p}}$ is Morita equivalent to a local ring

For
$$\mathcal{X} = \{\mathcal{X}^{\mathfrak{p}}\}_{\mathfrak{p}} \in \mathbb{T}_R(\Lambda)$$
 (or $\mathbb{F}_R(\Lambda)$), let $\mathcal{S}(\mathcal{X}) = \{\mathfrak{p} \in \operatorname{Spec} R \mid \mathcal{X}^{\mathfrak{p}} \neq 0\}$.

Corollary

Assume that $\Lambda_{\mathfrak{p}}$ is Morita equivalent to a local ring for all $\mathfrak{p} \in \operatorname{Spec} R$. (a) We have $S \circ \Phi_{t} = \operatorname{Supp}(-)$. This gives an isomorphism of posets. $\operatorname{tors} \Lambda \xrightarrow{\Phi_{t}} \operatorname{Im} \Phi_{t} \xrightarrow{S} \{ \text{specialization closed subsets of Spec } R \}$ (b) We have $S \circ \Phi_{f} = \operatorname{Ass}(-)$. This gives an isomorphism of posets. $\operatorname{torf} \Lambda \xrightarrow{\Phi_{f}} \mathbb{F}_{R}(\Lambda) \xrightarrow{S} \mathsf{P}(\operatorname{Spec} R).$

If $\Lambda_{\mathfrak{p}}$ is Morita equivalent to a local ring, then we have

$$\operatorname{tors}(k_{\mathfrak{p}}\Lambda) = \operatorname{torf}(k_{\mathfrak{p}}\Lambda) = \operatorname{serre}(k_{\mathfrak{p}}\Lambda) = \{0, \operatorname{mod} k_{\mathfrak{p}}\Lambda\}.$$

If $\Lambda = R$, then we have results by [Gabriel] and [Takahashi].

・ロット 御マ とほど きゅう

- (1) sim $k_{\mathfrak{p}}\Lambda$: the set of isomorphism classes of simple $k_{\mathfrak{p}}\Lambda\text{-modules}$
- (2) \exists isomorphisms of posets between serre $(k_{\mathfrak{p}}\Lambda)$ and the power set $\mathsf{P}(\sin k_{\mathfrak{p}}\Lambda)$:

$$\operatorname{serre}(k_{\mathfrak{p}}\Lambda) \simeq \mathsf{P}(\sin k_{\mathfrak{p}}\Lambda)$$

(3) Let Sim :=
$$\bigcup_{\mathfrak{p}\in \operatorname{Spec} R} \operatorname{sim}(k_{\mathfrak{p}}\Lambda)$$
, then
 $\mathbb{S}_{R}(\Lambda) \simeq \mathsf{P}(\operatorname{Sim})$

(4) We have

serre
$$\Lambda \xrightarrow{\Phi_{\mathrm{s}}} \operatorname{Im} \Phi_{\mathrm{s}} \subset \mathbb{S}_{R}(\Lambda) \simeq \mathsf{P}(\mathsf{Sim})$$

Characterize serre Λ inside P(Sim)

serre Λ inside $\mathsf{P}(\mathsf{Sim})$

$\mathsf{Sim} = \bigcup_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{sim}(k_\mathfrak{p} \Lambda)$

Definition (Poset structure on Sim)

(1) For $S, T \in Sim$ we write $S \leq T$ if :

• $S \in sim(k_{\mathfrak{p}}\Lambda)$, $T \in sim(k_{\mathfrak{q}}\Lambda)$, $\mathfrak{p} \supseteq \mathfrak{q}$. We regard T as a $\Lambda_{\mathfrak{p}}$ -module by $\Lambda_{\mathfrak{p}} \to \Lambda_{\mathfrak{q}}$. Then $S \leq T$ if S is a subfactor of T as a $\Lambda_{\mathfrak{p}}$ -module.

Then (Sim, \leq) is a poset.

(2) A subset \mathcal{W} of Sim is down-set if $\lceil T \in \mathcal{W}, S \leq T \in \text{Sim} \Rightarrow S \in \mathcal{W} \rfloor$ holds.

Theorem 2 (Iyama-Kimura)

 Φ_s : serre $\Lambda \to \mathsf{P}(\mathsf{Sim})$ induces an isomorphism of posets:

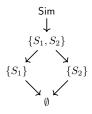
serre $\Lambda \simeq \{ \mathcal{W} \subseteq \mathsf{Sim} \mid \mathcal{W} \text{ is a down-set} \}$

Example

L

Let k be a field,
$$R = k[[x]]$$
, $\mathfrak{m} = (x)$. $\Lambda = \begin{pmatrix} R & R \\ \mathfrak{m} & R \end{pmatrix}$.
• $k_{\mathfrak{m}}\Lambda = \Lambda/\mathfrak{m}\Lambda = \begin{pmatrix} R/\mathfrak{m} & R/\mathfrak{m} \\ \mathfrak{m}/\mathfrak{m}^2 & R/\mathfrak{m} \end{pmatrix} \simeq k(1 \rightleftharpoons_{\beta} 2)/\langle \alpha\beta, \beta\alpha \rangle$
This algebra has two simple modules $S_1 = \begin{pmatrix} k \\ 0 \end{pmatrix}$ and $S_2 = \begin{pmatrix} 0 \\ k \end{pmatrix}$.
• $k_0\Lambda = \Lambda_0 = \begin{pmatrix} K & K \\ K & K \end{pmatrix}$, where $K = R_0 = k((x))$.
This algebra has one simple module $T = \begin{pmatrix} K \\ K \end{pmatrix}$.

 $\mathsf{Sim}=\{T,S_1,S_2\}$ with $T\geq S_1$ and $T\geq S_2.$ The Hasse diagram of serre Λ is



tors Λ

For $\mathfrak{p} \in \operatorname{Spec} R$ and $\mathcal{T} \in \operatorname{tors}(k_{\mathfrak{p}}\Lambda)$, the following $\overline{\mathcal{T}}$ is a torsion class of mod $\Lambda_{\mathfrak{p}}$:

$$\overline{\mathcal{T}} = \{ X \in \mathsf{mod}\,\Lambda_\mathfrak{p} \mid k_\mathfrak{p} \otimes_{R_\mathfrak{p}} X \in \mathcal{T} \} \in \mathsf{tors}\,\Lambda_\mathfrak{p}.$$

For $\mathfrak{p} \supseteq \mathfrak{q} \in \operatorname{Spec} R$, define a map $r_{\mathfrak{p},\mathfrak{q}}$ by

$$\mathbf{r}_{\mathfrak{p},\mathfrak{q}}: \mathsf{tors}(k_\mathfrak{p}\Lambda) \xrightarrow{\overline{(-)}} \mathsf{tors}\,\Lambda_\mathfrak{p} \xrightarrow{(-)_\mathfrak{q}} \mathsf{tors}\,\Lambda_\mathfrak{q} \xrightarrow{(-)\cap\mathsf{mod}\,k_\mathfrak{q}\Lambda} \mathsf{tors}(k_\mathfrak{q}\Lambda)$$

Definition

We say that $\mathcal{X} = {\mathcal{X}^{\mathfrak{p}}}_{\mathfrak{p}} \in \mathbb{T}_{R}(\Lambda)$ is compatible if $r_{\mathfrak{p},\mathfrak{q}}(\mathcal{X}^{\mathfrak{p}}) \supseteq \mathcal{X}^{\mathfrak{q}}$ holds for any pair $\mathfrak{p} \supseteq \mathfrak{q}$ of prime ideals of R.

Proposition

 $\operatorname{Im} \Phi_{\mathrm{t}} \subset \{ \text{compatible elements of } \mathbb{T}_{R}(\Lambda) \}$

ヘロン 人間 とくほど くほとう

Question

For which Λ , tors $\Lambda \simeq \operatorname{Im} \Phi_t = \{ \text{compatible elements of } \mathbb{T}_R(\Lambda) \}$?

Partial answer.

Theorem 3 (Iyama-Kimura)

Assume that R is semi-local with $\dim R = 1$. Then we have

tors $\Lambda \simeq \operatorname{Im} \Phi_{t} = \{ \text{compatible elements of } \mathbb{T}_{R}(\Lambda) \}.$

Question

How to calculate $r_{\mathfrak{p},\mathfrak{q}}$?

2-term silting complex

- ${\rm K}^{\rm b}(\operatorname{proj}\Lambda)$: the bounded homotopy category of $\operatorname{proj}\Lambda$
- $X, Y \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,\Lambda)$ are additively equivalent if $\operatorname{add} X = \operatorname{add} Y$ holds, where add $X := \{Z \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,\Lambda) \mid Z \text{ is a direct summand of } X^{\oplus \ell} \text{ for some } \ell\}$

Definition

 $X \in \mathsf{K}^{\mathrm{b}}(\operatorname{proj} \Lambda)$ is a 2-term silting complex if

- $\bullet \ X^i=0 \ \text{for} \ i\neq -1,0\text{,}$
- Hom(X, X[1]) = 0,
- thick $X = \mathsf{K}^{\mathsf{b}}(\operatorname{proj} \Lambda)$.

2-silt Λ : the set of additively equivalent classes of 2-term silting complexes

Remark

- $H^0(X)$ for $X \in 2$ -silt Λ are silting modules [Angeleri Hügel Marks Vitória].
- If R is a field and $X \in 2$ -silt Λ , $H^0(X)$ is called a support τ -tilting module [Adachi-Iyama-Reiten].

Lemma

Fac $H^0(X)$ is a torsion class of mod Λ for $X \in 2$ -silt Λ .

Proposition

Assume that (R, \mathfrak{m}) is a local ring. Let $M = H^0(X)$ for $X \in 2$ -silt Λ . Then for each $\mathfrak{q} \in \operatorname{Spec} R$, we have

 $\operatorname{r}_{\mathfrak{m},\mathfrak{q}}(\operatorname{Fac} M \cap \operatorname{mod} \Lambda/\mathfrak{m}\Lambda) = \operatorname{Fac} M_{\mathfrak{q}} \cap \operatorname{mod} k_{\mathfrak{q}}\Lambda.$

Note : Fac $M_{\mathfrak{q}} \cap \operatorname{mod} k_{\mathfrak{q}} \Lambda = \operatorname{Fac}(M_{\mathfrak{q}}/\mathfrak{q}M_{\mathfrak{q}})$

Example

Let
$$k$$
 be a field, $R = k[[x]]$, $\mathfrak{m} = (x)$. $\Lambda = \begin{pmatrix} R & R \\ \mathfrak{m} & R \end{pmatrix}$.

•
$$k_{\mathfrak{m}}\Lambda = \Lambda/\mathfrak{m}\Lambda \simeq k(1 \rightleftharpoons_{\beta}^{\alpha} 2)/\langle \alpha\beta, \beta\alpha \rangle$$

•
$$k_0\Lambda = \Lambda_0 = \operatorname{Mat}_2(K)$$
, where $K = R_0 = k((x))$.

• We have

$$\begin{split} & \text{tors}\,\Lambda\simeq\{\text{compatible elements of }\mathbb{T}_R(\Lambda)\} & \text{by Theorem 3}\\ &=\{(\mathcal{X}^\mathfrak{m},\mathcal{X}^0)\in\mathbb{T}_R(\Lambda)\mid r_{\mathfrak{m},0}(\mathcal{X}^\mathfrak{m})\supseteq\mathcal{X}^0\}. \end{split}$$

$$\operatorname{tors}(\Lambda/\mathfrak{m}\Lambda) = \left\{ \begin{array}{cc} \operatorname{mod} \Lambda/\mathfrak{m}\Lambda \\ \swarrow & \searrow \\ \operatorname{Fac} P_1 & \operatorname{Fac} P_2 \\ \downarrow & \downarrow \\ \operatorname{add} S_1 & \operatorname{add} S_2 \\ & \swarrow & \swarrow \\ 0 \end{array} \right\} \xrightarrow{\operatorname{r}_{\mathfrak{m},0}} \left\{ \begin{array}{c} \operatorname{mod} \Lambda_0 \\ \downarrow \\ 0 \end{array} \right\} = \operatorname{tors}(\Lambda_0)$$

・ロト ・回ト ・ヨト ・ヨト

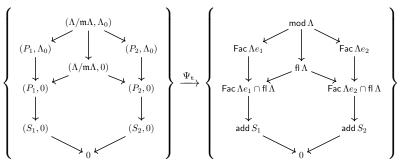
Example

• Since $P_i = (\Lambda/\mathfrak{m}\Lambda)e_i$, we have

 $\mathrm{r}_{\mathfrak{m},0}(\mathsf{Fac}\,P_i) = \mathrm{r}_{\mathfrak{m},0}(\mathsf{Fac}\,\Lambda e_i \cap \mathsf{mod}\,\Lambda/\mathfrak{m}\Lambda) \stackrel{\mathsf{Prop}}{=} \mathsf{Fac}(\Lambda e_i)_0 = \mathsf{mod}\,\Lambda_0.$

• $tors(\Lambda/\mathfrak{m}\Lambda)$, $Fac P_1$, $Fac P_2$ go to $mod \Lambda_0$ by $r_{\mathfrak{m},0}$.

 ${\, \bullet \,}$ tors Λ has the following Hasse quiver



< 口 > < 同 > < 三 > <

Let k be a field, A a finite dimensional k-algebra. A simple A-module S is k-simple if $\operatorname{End}_A(S) \simeq k$. For example, $k = \overline{k}$ or A = kQ/I (I is an admissible ideal), then all simple modules are k-simple.

Theorem 4 (Iyama-Kimura)

Let A a finite dimensional $k\mbox{-algebra},$ and R a commutative Noetherian ring which contains k. Assume that

- all simple A-modules are k-simple, and
- tors A is a finite set.

Then we have

 $\operatorname{tors}(R \otimes_k A) \simeq \operatorname{Hom}_{\operatorname{poset}}(\operatorname{Spec} R, \operatorname{tors} A)$

Example

Let k be a field. Let Q be a Dynkin quiver and $\mathsf{Cam}(Q)$ the Cambrian lattice of Q. By [Ingalls-Thomas, Reading] there is an isomorphism of posets,

 $\operatorname{tors}(kQ)\simeq\operatorname{Cam}(Q).$

Therefore for a commutative Noetherian ring R containing the field k, we have tors $RQ \simeq \operatorname{Hom}_{\operatorname{poset}}(\operatorname{Spec} R, \operatorname{Cam}(Q)).$

Example

Question 1

For which Λ , $\operatorname{Im} \Phi_t = \{ \text{compatible elements of } \mathbb{T}_R(\Lambda) \}$?

 \Rightarrow So far we do not know any Λ such that $\operatorname{Im} \Phi_t \neq \{\text{compatible}\}.$

Question 2

Assume that (R, \mathfrak{m}) is a local ring. When does the following equality hold?

 $\operatorname{tors}(\Lambda/\mathfrak{m}\Lambda) = \{\operatorname{Fac}(M/\mathfrak{m}M) \mid M \text{ is a silting } \Lambda\operatorname{-module}\}$

 \Rightarrow We have an analog of the result of [Demonet-Iyama-Jasso] (τ -tilting finiteness).

 $\bullet\,$ f-tors $\Lambda\,:\,$ the set of functorially finite torsion classes of $\operatorname{mod}\Lambda$

Proposition (Adachi-Iyama-Reiten '14)

Let \boldsymbol{A} be a finite dimensional algebra. Then

2-silt
$$A \longrightarrow f$$
-tors $A, \quad X \mapsto \mathsf{Fac}\, H^0(X)$

is a bijection.

Theorem (Demonet-Iyama-Jasso '19)

Let A be a finite dimensional algebra. TFAE

(i) $\operatorname{tors} A = \operatorname{f-tors} A$

(ii) tors A is a finite set.

(iii) 2-silt A is a finite set.

Theorem 5 (Iyama-Kimura)

Assume that (R, \mathfrak{m}) is a local ring. Then $(i) \Rightarrow (ii) \Rightarrow (iii)$ hold.

- (i) $\operatorname{tors}(\Lambda/\mathfrak{m}\Lambda) = \{\operatorname{Fac}(H^0(X)/\mathfrak{m}H^0(X)) \mid X \in 2\operatorname{-silt}\Lambda\}$
- (ii) $\operatorname{tors}(\Lambda/\mathfrak{m}\Lambda)$ is a finite set.
- (iii) 2-silt Λ is a finite set.
- If Λ is semi-perfect, then $(iii) \Rightarrow (i)$ holds.

Remark

In general, the right hand side of (i) is strictly smaller than f-tors($\Lambda/\mathfrak{m}\Lambda)$

Assume that (R, \mathfrak{m}) is a local ring. For a 2-term complex $X = (X^{-1} \to X^0)$, let $\overline{X} = (X^{-1}/\mathfrak{m}X^{-1} \to X^0/\mathfrak{m}X^0)$.

Proposition (Kimura, Gnedin, Eisele)

The assignment $X \mapsto \overline{X}$ gives an injective map

2-silt $\Lambda \longrightarrow 2$ -silt $(\Lambda/\mathfrak{m}\Lambda)$.

If Λ is semi-perfect, then this map is a bijection.

 Λ is semi-perfect if it admits a decomposition $_{\Lambda}\Lambda = P_1 \oplus \cdots \oplus P_r$ such that each P_i has a local endomorphism ring. For example,

- If R is complete local, then Λ is semi-perfect.
- If R is local, then RQ is semi-perfect for a finite acyclic quiver Q.