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Notation

R : commutative Noetherian ring

Λ : Noetherian R-algebra i.e. RΛ is a finitely generated R-module

modΛ : the category of finitely generated left Λ-modules

Λ = R⇒ Λ is a commutative Noetherian ring

R is a field ⇒ Λ is a finite dimensional R-algebra

Goal

Classify torsion (free) classes, Serre subcategories of modΛ.

Yuta Kimura (The University of Tokyo) Classifying torsion classes of Noetherian algebras 2022.3.17 2 / 27



Definitions of subcategories

Let A = modΛ and C ⊂ A a subcategory.

C is closed under extensions :⇔ for a short exact sequence
0→ X → Y → Z → 0 in A, if X,Z ∈ C, then Y ∈ C.
C is closed under quotients :⇔ 「Y ∈ C, Y ↠ Z ∈ A ⇒ Z ∈ C 」
C is closed under submodules :⇔ 「Y ∈ C, X ↣ Y ∈ A ⇒ X ∈ C 」

Definition

(1) C : torsion class :⇔ closed under quotients and extensions.

(2) C : torsionfree class :⇔ closed under submodules and extensions.

(3) C : Serre subcategory :⇔ C is a torsion class and a torsionfreee class.

torsΛ = {torsion classes ofA}, torf Λ = {torsionfree classes ofA}
serreΛ = {Serre subcategories ofA}
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serreR

SpecR = {prime ideals of R}
SuppM = {p ∈ SpecR |Mp 6= 0} for M ∈ modR

W ⊆ SpecR : specialization closed
:⇔ 「p ∈ W, p ⊆ q ∈ SpecR⇒ q ∈ W」

Theorem (Gabriel ’62)

For a subcategory C of modR, let Supp C :=
⋃

M∈C SuppM . Then this induces
an isomorphism of posets:

serreR
Supp(−)−−−−−→ {specialization closed subsets of SpecR}
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torsR and torf R

For M ∈ modR, AssM := {p ∈ SpecR | ∃R/p ↪→M}.

Theorem (Takahashi ’08)

For a subcategory C of modR, let Ass C :=
⋃

M∈C AssM . Then this induces an
isomorphism of posets:

torf R
Ass(−)−−−−→ P(SpecR) := {subsets of SpecR}.

Theorem (Stanley-Wang ’11)

serreR = torsR holds for a commutative Noetherian ring R.
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If Λ is a finite dimensional algebra over a field

M ∈ modΛ

FacM := {X ∈ modΛ | ∃M⊕ℓ ↠ X, ∃` ≥ 0}
f-torsΛ := {T ∈ torsΛ | T is functorially finite in modΛ}

= {T ∈ torsΛ | ∃M ∈ modΛ s.t. FacM = T }

Results for torsΛ and f-torsΛ

(a) [Adachi-Iyama-Reiten ’14]

f-torsΛ
1−1←→ {isoclasses of basic support τ -tilting Λ-modules}

(b) [Demonet-Iyama-Jasso ’19]

| torsΛ| <∞⇔ | f-torsΛ| <∞⇔ torsΛ = f-torsΛ

(c) [Ingalls-Thomas, Mizuno, Chan-Demonet,...]

For some classes of algebras, classification results of torsΛ and f-torsΛ.

Path algebras of Dynkin quivers.
Preprojective algebras of Dynkin type.
Gentle algebras

Yuta Kimura (The University of Tokyo) Classifying torsion classes of Noetherian algebras 2022.3.17 6 / 27



Notation

For p ∈ SpecR, let
Λp := Rp ⊗R Λ.

Λp is a Noetherian Rp-algebra.

For p ∈ SpecR, let kp = Rp/pRp and

kpΛ := kp ⊗R Λ.

kpΛ is a finite dimensional kp-algebra. We have mod kpΛ ⊆ modΛp.

Today

Classify torsΛ, torf Λ and serreΛ via tors(kpΛ), torf(kpΛ) and serre(kpΛ).
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Localization

For a subcategory C ⊆ modΛ and p ∈ SpecR, let

Cp := {Mp |M ∈ C } ⊆ modΛp.

Lemma

(a) C ∈ torsΛ =⇒ Cp ∈ torsΛp

(b) C ∈ torf Λ =⇒ Cp ∈ torf Λp

(c) C ∈ serreΛ =⇒ Cp ∈ serreΛp

An assignment C 7→ Cp ∩mod kpΛ gives three maps

torsΛ −→ tors(kpΛ), torf Λ −→ torf(kpΛ), serreΛ −→ serre(kpΛ)
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Maps Φ

Definition

TR(Λ) :=
∏

p∈SpecR

tors(kpΛ), FR(Λ) :=
∏

p∈SpecR

torf(kpΛ)

SR(Λ) :=
∏

p∈SpecR

serre(kpΛ)

Definition
For a subcategory C of modΛ, let

Φ(C) := {Cp ∩mod kpΛ}p∈SpecR

By restricting Φ, we have the following three maps

torsΛ
Φt−→ TR(Λ), torf Λ

Φf−→ FR(Λ), serreΛ
Φs−→ SR(Λ)
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Maps Ψ

For X = {X p}p ∈ TR(Λ), let

Ψt(X ) := {M ∈ modΛ | kp ⊗Rp
M ∈ X p, ∀p ∈ SpecR}.

For Y = {Yp}p ∈ FR(Λ), let

Ỹp = {M ∈ modΛ |Mp ∈ Yp, AssR M ⊆ {p}}

Ψf(Y) := Filt
(
Ỹp

∣∣∣p ∈ SpecR
)
⊂ modΛ

Proposition

We have three maps

TR(Λ)
Ψt−−→ torsΛ, FR(Λ)

Ψf−−→ torf Λ, SR(Λ)
Ψs=Ψt|SR(Λ)−−−−−−−−→ serreΛ
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Theorem

Theorem 1 (Iyama-Kimura)

(a) Φf is an isomorphism of posets with an inverse Ψf .

(b) Ψt ◦ Φt = idtorsΛ and Ψs ◦ Φs = idserreΛ hold.

(c) Φt and Φs are embeddings of posets.

serreΛ torsΛ torf Λ

SR(Λ) TR(Λ) FR(Λ)

Φs Φt

(−)⊥

Φf≀Ψs

(−)⊥

≃

Ψt Ψf

where T ⊥ = {X ∈ modΛ | HomΛ(T,X) = 0, ∀T ∈ T }.
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Corollary : Λp is Morita equivalent to a local ring

For X = {X p}p ∈ TR(Λ)( or FR(Λ)), let S(X ) = {p ∈ SpecR | X p 6= 0}.

Corollary

Assume that Λp is Morita equivalent to a local ring for all p ∈ SpecR.

(a) We have S ◦ Φt = Supp(−). This gives an isomorphism of posets.

torsΛ
Φt−→ ImΦt

S−→ {specialization closed subsets of SpecR}
(b) We have S ◦ Φf = Ass(−). This gives an isomorphism of posets.

torf Λ
Φf−→ FR(Λ)

S−→ P(SpecR).

If Λp is Morita equivalent to a local ring, then we have

tors(kpΛ) = torf(kpΛ) = serre(kpΛ) = {0,mod kpΛ}.

If Λ = R, then we have results by [Gabriel] and [Takahashi].
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serreΛ

(1) sim kpΛ : the set of isomorphism classes of simple kpΛ-modules

(2) ∃ isomorphisms of posets between serre(kpΛ) and the power set P(sim kpΛ):

serre(kpΛ) ' P(sim kpΛ)

(3) Let Sim :=
⋃

p∈SpecR sim(kpΛ), then

SR(Λ) ' P(Sim)

(4) We have

serreΛ
Φs−→
≃

ImΦs ⊂ SR(Λ) ' P(Sim)

Characterize serreΛ inside P(Sim)
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serreΛ inside P(Sim)

Sim =
⋃

p∈SpecR sim(kpΛ)

Definition ( Poset structure on Sim)

(1) For S, T ∈ Sim we write S ≤ T if :

S ∈ sim(kpΛ), T ∈ sim(kqΛ), p ⊇ q. We regard T as a Λp-module by
Λp → Λq. Then S ≤ T if S is a subfactor of T as a Λp-module.

Then (Sim,≤) is a poset.

(2) A subset W of Sim is down-set if「T ∈ W, S ≤ T ∈ Sim⇒ S ∈ W」holds.

Theorem 2 (Iyama-Kimura)

Φs : serreΛ→ P(Sim) induces an isomorphism of posets:

serreΛ ' {W ⊆ Sim | W is a down-set}
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Example

Let k be a field, R = k[[x]], m = (x). Λ =

(
R R
m R

)
.

kmΛ = Λ/mΛ =

(
R/m R/m
m/m2 R/m

)
' k( 1 2

α

β
)/〈αβ, βα〉

This algebra has two simple modules S1 =

(
k
0

)
and S2 =

(
0
k

)
.

k0Λ = Λ0 =

(
K K
K K

)
, where K = R0 = k((x)).

This algebra has one simple module T =

(
K
K

)
.

Sim = {T, S1, S2} with T ≥ S1 and T ≥ S2. The Hasse diagram of serreΛ is

Sim

{S1, S2}

{S1} {S2}

∅
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torsΛ

For p ∈ SpecR and T ∈ tors(kpΛ), the following T is a torsion class of modΛp:

T = {X ∈ modΛp | kp ⊗Rp
X ∈ T } ∈ torsΛp.

For p ⊇ q ∈ SpecR, define a map rp,q by

rp,q : tors(kpΛ)
(−)−−→ torsΛp

(−)q−−−→ torsΛq
(−)∩mod kqΛ−−−−−−−−→ tors(kqΛ)

Definition

We say that X = {X p}p ∈ TR(Λ) is compatible if rp,q(X p)⊇X q holds for any
pair p ⊇ q of prime ideals of R.

Proposition

ImΦt ⊂ {compatible elements of TR(Λ)}

Yuta Kimura (The University of Tokyo) Classifying torsion classes of Noetherian algebras 2022.3.17 16 / 27



Compatible elements

Question

For which Λ, torsΛ ' ImΦt = {compatible elements of TR(Λ)} ?

Partial answer.

Theorem 3 (Iyama-Kimura)

Assume that R is semi-local with dimR = 1. Then we have

torsΛ ' ImΦt = {compatible elements of TR(Λ)}.

Question
How to calculate rp,q ?
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2-term silting complex

Kb(projΛ) : the bounded homotopy category of projΛ

X,Y ∈ Kb(projΛ) are additively equivalent if addX = addY holds, where

addX := {Z ∈ Kb(projΛ) | Z is a direct summand of X⊕ℓ for some `}

Definition

X ∈ Kb(projΛ) is a 2-term silting complex if

Xi = 0 for i 6= −1, 0,
Hom(X,X[1])= 0,

thickX = Kb(projΛ).

2-siltΛ : the set of additively equivalent classes of 2-term silting complexes

Remark

H0(X) for X ∈ 2-siltΛ are silting modules [Angeleri Hügel - Marks - Vitória].

If R is a field and X ∈ 2-siltΛ, H0(X) is called a support τ -tilting module
[Adachi-Iyama-Reiten].
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2-term silting complex and the map rp,q

Lemma

FacH0(X) is a torsion class of modΛ for X ∈ 2-siltΛ.

Proposition

Assume that (R,m) is a local ring. Let M = H0(X) for X ∈ 2-siltΛ. Then for
each q ∈ SpecR, we have

rm,q(FacM ∩modΛ/mΛ) = FacMq ∩mod kqΛ.

Note : FacMq ∩mod kqΛ = Fac(Mq/qMq)
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Example

Let k be a field, R = k[[x]], m = (x). Λ =

(
R R
m R

)
.

kmΛ = Λ/mΛ ' k( 1 2
α

β
)/〈αβ, βα〉

k0Λ = Λ0 = Mat2(K), where K = R0 = k((x)).

We have

torsΛ ' {compatible elements of TR(Λ)} by Theorem 3

= {(Xm,X 0) ∈ TR(Λ) | rm,0(Xm) ⊇ X 0}.

tors(Λ/mΛ) =



modΛ/mΛ

FacP1 FacP2

addS1 addS2

0


rm,0−−−→

 modΛ0

0

 = tors(Λ0)
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Example

Since Pi = (Λ/mΛ)ei, we have

rm,0(FacPi) = rm,0(FacΛei ∩modΛ/mΛ)
Prop
= Fac(Λei)0 = modΛ0.

tors(Λ/mΛ),FacP1,FacP2 go to modΛ0 by rm,0.

torsΛ has the following Hasse quiver

(Λ/mΛ,Λ0)

(P1,Λ0) (P2,Λ0)

(Λ/mΛ, 0)

(P1, 0) (P2, 0)

(S1, 0) (S2, 0)

0



Ψt−−→



modΛ

FacΛe1 FacΛe2

flΛ

FacΛe1 ∩ flΛ FacΛe2 ∩ flΛ

addS1 addS2

0


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Theorem for R⊗k A

Let k be a field, A a finite dimensional k-algebra. A simple A-module S is
k-simple if EndA(S) ' k.
For example, k = k or A = kQ/I (I is an admissible ideal), then all simple
modules are k-simple.

Theorem 4 (Iyama-Kimura)

Let A a finite dimensional k-algebra, and R a commutative Noetherian ring which
contains k. Assume that

all simple A-modules are k-simple, and

torsA is a finite set.

Then we have

tors(R⊗k A) ' Homposet(SpecR, torsA)
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Example

Let k be a field. Let Q be a Dynkin quiver and Cam(Q) the Cambrian lattice of
Q. By [Ingalls-Thomas, Reading] there is an isomorphism of posets,

tors(kQ) ' Cam(Q).

Therefore for a commutative Noetherian ring R containing the field k, we have

torsRQ ' Homposet(SpecR,Cam(Q)).

Example

Let R = k[[x]] and m = (x). Let Q = (1→ 2).

SpecR =


m

0

 , tors(kQ) =


◦

◦
◦

◦
◦

 , tors(RQ) =



◦

◦
◦

◦
◦◦

◦

◦

◦

◦ ◦
◦

◦


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Problems

Question 1

For which Λ, ImΦt = {compatible elements of TR(Λ)} ?

⇒ So far we do not know any Λ such that ImΦt 6= {compatible}.

Question 2

Assume that (R,m) is a local ring. When does the following equality hold?

tors(Λ/mΛ) = {Fac(M/mM) |M is a silting Λ-module}

⇒ We have an analog of the result of [Demonet-Iyama-Jasso] (τ -tilting finiteness).
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τ -tilting finite algebra

f-torsΛ : the set of functorially finite torsion classes of modΛ

Proposition (Adachi-Iyama-Reiten ’14)

Let A be a finite dimensional algebra. Then

2-siltA −→ f-torsA, X 7→ FacH0(X)

is a bijection.

Theorem (Demonet-Iyama-Jasso ’19)

Let A be a finite dimensional algebra. TFAE

(i) torsA = f-torsA

(ii) torsA is a finite set.

(iii) 2-siltA is a finite set.
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Finite type

Theorem 5 (Iyama-Kimura)

Assume that (R,m) is a local ring. Then (i)⇒ (ii)⇒ (iii) hold.

(i) tors(Λ/mΛ) = {Fac(H0(X)/mH0(X)) | X ∈ 2-siltΛ}
(ii) tors(Λ/mΛ) is a finite set.

(iii) 2-siltΛ is a finite set.

If Λ is semi-perfect, then (iii)⇒ (i) holds.

Remark

In general, the right hand side of (i) is strictly smaller than f-tors(Λ/mΛ)
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Reduction of 2-term silting complexes

Assume that (R,m) is a local ring. For a 2-term complex X = (X−1 → X0), let
X = (X−1/mX−1 → X0/mX0).

Proposition (Kimura, Gnedin, Eisele)

The assignment X 7→ X gives an injective map

2-siltΛ −→ 2-silt(Λ/mΛ).

If Λ is semi-perfect, then this map is a bijection.

Λ is semi-perfect if it admits a decomposition ΛΛ = P1 ⊕ · · · ⊕ Pr such that each
Pi has a local endomorphism ring.
For example,

If R is complete local, then Λ is semi-perfect.

If R is local, then RQ is semi-perfect for a finite acyclic quiver Q.
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