Bridgeland stability conditions with massless objects

Jon Woolf j.w. Nathan Broomhead, David Pauksztello and David Ploog

January, 2022

NB, DP, DP, JW

Bridgeland stability spaces

January, 2022 1 / 25

Image: A matching of the second se

Plan

- Overview and motivation
- 2 Degenerate stability conditions
- 3 Partial compactifications
 - 4 Related constructions
- 5 Two-dimensional examples

(日)

Plan

Overview and motivation

-

(日)

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ subgroup of autoequivalences descending to Λ

イロト イボト イヨト イヨト

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_\Lambda(\mathcal{T})$ subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \xrightarrow{\mathcal{Z}} \operatorname{Hom}(\Lambda, \mathbb{C})$

イロト イヨト イヨト イ

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \xrightarrow{\mathcal{Z}} \operatorname{Hom}(\Lambda, \mathbb{C})$

• is a non-compact \mathbb{C} -manifold locally homeomorphic to $Hom(\Lambda, \mathbb{C})$

ヘロア ヘロア ヘビア

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \xrightarrow{\mathcal{Z}} \operatorname{Hom}(\Lambda, \mathbb{C})$

- is a non-compact \mathbb{C} -manifold locally homeomorphic to $\mathsf{Hom}(\Lambda,\mathbb{C})$
- has a left $Aut_{\Lambda}(\mathcal{T})$ action

Image: A match a ma

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \xrightarrow{\mathcal{Z}} \operatorname{Hom}(\Lambda, \mathbb{C})$

- \bullet is a non-compact $\mathbb C\text{-manifold}$ locally homeomorphic to $\mathsf{Hom}(\Lambda,\mathbb C)$
- has a left $Aut_{\Lambda}(\mathcal{T})$ action
- and a right $G = GL_2^+ \mathbb{R}$ action with $\mathbb{C} = \widetilde{\mathbb{C}^*}$ acting freely.

ヘロア ヘロア ヘビア

Set up

- \mathcal{T} triangulated category
- A finite rank free quotient of $K(\mathcal{T})$
- $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \xrightarrow{\mathcal{Z}} \operatorname{Hom}(\Lambda, \mathbb{C})$

- \bullet is a non-compact $\mathbb C\text{-manifold}$ locally homeomorphic to $\mathsf{Hom}(\Lambda,\mathbb C)$
- has a left $Aut_{\Lambda}(\mathcal{T})$ action

• and a right $G = GL_2^+\mathbb{R}$ action with $\mathbb{C} = \widetilde{\mathbb{C}^*}$ acting freely.

Stability spaces are conjecturally contractible (when non-empty) and to simplify the exposition I assume they are connected!

ヘロマ ふぼ マ み ぼ マ ふ

Goal

Construct modular partial compactification of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

590

< □ > < □ > < □ > < □ > < □ >

Goal

Construct modular partial compactification of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

Motivation

Obtain information about

• the boundary of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

イロト イボト イヨト イヨ

Goal

Construct modular partial compactification of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

Motivation

Obtain information about

- **1** the boundary of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$
- **2** the wall-and-chamber structure of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

イロト イポト イヨト イヨ

Goal

Construct modular partial compactification of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

Motivation

Obtain information about

- the boundary of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$
- **2** the wall-and-chamber structure of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$
- ${f 0}$ the relation between stability spaces of ${\cal T}$ and its quotients.

イロト イボト イヨト イヨト

Goal

Construct modular partial compactification of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$

Motivation

Obtain information about

- the boundary of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$
- **2** the wall-and-chamber structure of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$
- ${f 0}$ the relation between stability spaces of ${\cal T}$ and its quotients.

Approach

Allow stability conditions with massless objects!

イロト イボト イヨト イヨト

Plan

Overview and motivation

- 2 Degenerate stability conditions
 - 3 Partial compactifications
 - 4 Related constructions
 - 5 Two-dimensional examples

-

(日)

A pre-stability condition is a pair (\mathcal{P}, Z) where

< <u>1</u>28 ₽

A pre-stability condition is a pair (\mathcal{P}, Z) where • $\mathcal{P}(\varphi)$ is a full additive subcategory of \mathcal{T} for $\varphi \in \mathbb{R}$

A pre-stability condition is a pair (\mathcal{P}, Z) where

- $\mathcal{P}(\varphi)$ is a full additive subcategory of \mathcal{T} for $\varphi \in \mathbb{R}$
- $Z : \Lambda \to \mathbb{C}$ is a homomorphism

A pre-stability condition is a pair (\mathcal{P}, Z) where

- $\mathcal{P}(arphi)$ is a full additive subcategory of \mathcal{T} for $arphi \in \mathbb{R}$
- $Z: \Lambda \to \mathbb{C}$ is a homomorphism

satisfying

• $\mathcal{P}(\varphi+1) = \mathcal{P}(\varphi)[1]$

A pre-stability condition is a pair (\mathcal{P}, Z) where

- $\mathcal{P}(arphi)$ is a full additive subcategory of \mathcal{T} for $arphi \in \mathbb{R}$
- $Z: \Lambda \to \mathbb{C}$ is a homomorphism

satisfying

• $\mathcal{P}(\varphi + 1) = \mathcal{P}(\varphi)[1]$ • $\varphi > \psi \implies \operatorname{Hom}(\mathcal{P}(\varphi), \mathcal{P}(\psi)) = 0$

A pre-stability condition is a pair (\mathcal{P}, Z) where

- $\mathcal{P}(arphi)$ is a full additive subcategory of \mathcal{T} for $arphi \in \mathbb{R}$
- $Z: \Lambda \to \mathbb{C}$ is a homomorphism

satisfying

 $\begin{array}{l} \bullet \ \mathcal{P}(\varphi+1) = \mathcal{P}(\varphi)[1] \\ \bullet \ \varphi > \psi \implies \operatorname{Hom}(\mathcal{P}(\varphi), \mathcal{P}(\psi)) = 0 \\ \bullet \ t \in \mathcal{P}(\varphi) \implies Z(t) = m(t) \exp(i\pi\varphi) \text{ for } m(t) > 0 \end{array}$

A pre-stability condition is a pair (\mathcal{P}, Z) where

- $\mathcal{P}(arphi)$ is a full additive subcategory of \mathcal{T} for $arphi \in \mathbb{R}$
- $Z: \Lambda \to \mathbb{C}$ is a homomorphism

satisfying

Stability conditions and spaces

Support property

A stability condition (\mathcal{P}, Z) is a pre-stability condition such that

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ semistable}\right\} > 0$$

where $|| \cdot ||$ is (any) norm on $\Lambda \otimes \mathbb{R}$. This implies $\mathcal{P}(I)$ is a quasi-abelian length category whenever |I| < 1, in particular \mathcal{P} is a locally-finite slicing.

< ロト < 同ト < ヨト < ヨト

Stability conditions and spaces

Support property

A stability condition (\mathcal{P}, Z) is a pre-stability condition such that

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ semistable}\right\} > 0$$

where $|| \cdot ||$ is (any) norm on $\Lambda \otimes \mathbb{R}$. This implies $\mathcal{P}(I)$ is a quasi-abelian length category whenever |I| < 1, in particular \mathcal{P} is a locally-finite slicing.

Stability spaces

The Bridgeland stability space

```
\operatorname{Stab}_{\Lambda}(\mathcal{D}) \subset \operatorname{Slice}\left(\mathcal{T}\right) \times \mathsf{Hom}(\Lambda,\mathbb{C})
```

is the subset of stability conditions with the subspace topology.

NB, DP, DP, JW

Bridgeland stability spaces

January, 2022 8 / 25

Degenerate stability condition

A degenerate stability condition is a pair (\mathcal{P}, Z) such that

$$t \in \mathcal{P}(arphi) \implies Z(t) = m(t)e^{i\piarphi}$$
 with $m(t) \ge 0$

(日)

Degenerate stability condition

A degenerate stability condition is a pair (\mathcal{P}, Z) such that

$$t \in \mathcal{P}(\varphi) \implies Z(t) = m(t)e^{i\pi\varphi}$$
 with $m(t) \ge 0$

satisfying the weakened support property

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ stable}, m(t) \neq 0\right\} > 0.$$

(日)

Degenerate stability condition

A degenerate stability condition is a pair (\mathcal{P}, Z) such that

$$t \in \mathcal{P}(arphi) \implies Z(t) = m(t)e^{i\piarphi}$$
 with $m(t) \ge 0$

satisfying the weakened support property

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ stable}, m(t) \neq 0\right\} > 0.$$

Remarks

1 The slices $\mathcal{P}(\varphi)$ are quasi-abelian but not necessarily abelian.

NB, DP, DP, JW

イロト イロト イヨト

Degenerate stability condition

A degenerate stability condition is a pair (\mathcal{P}, Z) such that

$$t \in \mathcal{P}(\varphi) \implies Z(t) = m(t)e^{i\pi \varphi}$$
 with $m(t) \ge 0$

satisfying the weakened support property

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ stable}, m(t) \neq 0\right\} > 0.$$

Remarks

- The slices $\mathcal{P}(\varphi)$ are quasi-abelian but not necessarily abelian.
- **2** The slicing \mathcal{P} is not necessarily locally-finite.

NB, DP, DP, JW

・ ロ ト ・ 雪 ト ・ ヨ ト

Degenerate stability condition

A degenerate stability condition is a pair (\mathcal{P}, Z) such that

$$t \in \mathcal{P}(\varphi) \implies Z(t) = m(t)e^{i\pi\varphi}$$
 with $m(t) \ge 0$

satisfying the weakened support property

$$\inf\left\{\frac{m(t)}{||t||}: t \text{ stable}, m(t) \neq 0\right\} > 0.$$

Remarks

- The slices $\mathcal{P}(\varphi)$ are quasi-abelian but not necessarily abelian.
- **2** The slicing \mathcal{P} is not necessarily locally-finite.
- Solution Any (\mathcal{P}, Z) in $\overline{\operatorname{Stab}_{\Lambda}(\mathcal{T})}$ is a degenerate pre-stability condition.

イロト 不得 トイヨト イヨト

Proposition

Let (\mathcal{P}, Z) be a degenerate stability condition. Then

• The massless subcategory $\mathcal{M} = \{t \in \mathcal{T} : m(t) = 0\}$ is thick

< □ > < 同 > < 三 > <

Proposition

Let (\mathcal{P}, Z) be a degenerate stability condition. Then

- The massless subcategory $\mathcal{M} = \{t \in \mathcal{T} : m(t) = 0\}$ is thick
- **2** $\mathcal{P}(I) \cap \mathcal{M}$ is a Serre subcategory of $\mathcal{P}(I)$ when |I| = 1

Proposition

Let (\mathcal{P}, Z) be a degenerate stability condition. Then

- The massless subcategory $\mathcal{M} = \{t \in \mathcal{T} : m(t) = 0\}$ is thick
- **2** $\mathcal{P}(I) \cap \mathcal{M}$ is a Serre subcategory of $\mathcal{P}(I)$ when |I| = 1
- $\ \, \bullet \ \, {\mathcal P} \ \, {\it restricts} \ \, {\it to} \ \, a \ \, {\it slicing} \ \, {\mathcal P}_{\mathcal M} \ \, {\it of} \ \, {\mathcal M} \ \,$

- ロト - 何ト - ヨト - ヨト

Proposition

Let (\mathcal{P}, Z) be a degenerate stability condition. Then

- The massless subcategory $\mathcal{M} = \{t \in \mathcal{T} : m(t) = 0\}$ is thick
- **2** $\mathcal{P}(I) \cap \mathcal{M}$ is a Serre subcategory of $\mathcal{P}(I)$ when |I| = 1
- $\begin{tabular}{ll} \end{tabular} {\begin{tabular}{ll} \end{tabular}} \end{tabular} \mathcal{P} \end{tabular} \end{tabular} \end{tabular} {\begin{tabular}{ll} \end{tabular}} \end{tabular} \mathcal{P} \end{tabular} \end{tabul$
- \mathcal{P} descends to a slicing $\mathcal{P}_{\mathcal{T}/\mathcal{M}}$ of \mathcal{T}/\mathcal{M} .

イロト イポト イヨト イヨト

Proposition

Let (\mathcal{P}, Z) be a degenerate stability condition. Then

- The massless subcategory $\mathcal{M} = \{t \in \mathcal{T} : m(t) = 0\}$ is thick
- **2** $\mathcal{P}(I) \cap \mathcal{M}$ is a Serre subcategory of $\mathcal{P}(I)$ when |I| = 1
- $\begin{tabular}{ll} \end{tabular} {\begin{tabular}{ll} \end{tabular}} \end{tabular} \mathcal{P} \end{tabular} \end{tabular} \end{tabular} {\begin{tabular}{ll} \end{tabular}} \end{tabular} \mathcal{P} \end{tabular} \end{tabul$
- \mathcal{P} descends to a slicing $\mathcal{P}_{\mathcal{T}/\mathcal{M}}$ of \mathcal{T}/\mathcal{M} .

Corollary

Let $\Lambda_{\mathcal{M}}$ be the saturation of the image of $K(\mathcal{M}) \to K(\mathcal{T}) \to \Lambda$. Then

$$(P_{\mathcal{T}/\mathcal{M}}, Z) \in \operatorname{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M})$$

Roughly, a degenerate stability condition consists of a massless part, a slicing on \mathcal{M} , and a massive part, a stability condition on \mathcal{T}/\mathcal{M} .

Glueing slicings

Theorem

Suppose $\mathcal{M} \subset \mathcal{T}$ is thick and $(\mathcal{Q}, \mathcal{R}) \in \operatorname{Slice}(\mathcal{M}) \times \operatorname{Slice}(\mathcal{T}/\mathcal{M})$.

イロト イポト イヨト イヨ

Glueing slicings

Theorem

Suppose $\mathcal{M} \subset \mathcal{T}$ is thick and $(\mathcal{Q}, \mathcal{R}) \in \text{Slice}(\mathcal{M}) \times \text{Slice}(\mathcal{T}/\mathcal{M})$. Then • there is at most one slicing \mathcal{P} with $\mathcal{Q}(\varphi) \subset \mathcal{P}(\varphi) \subset \mathcal{R}(\varphi)$ for $\varphi \in \mathbb{R}$

イロト イポト イヨト イヨ
Glueing slicings

Theorem

Suppose $\mathcal{M} \subset \mathcal{T}$ is thick and $(\mathcal{Q}, \mathcal{R}) \in \operatorname{Slice}(\mathcal{M}) \times \operatorname{Slice}(\mathcal{T}/\mathcal{M})$. Then

- there is at most one slicing \mathcal{P} with $\mathcal{Q}(\varphi) \subset \mathcal{P}(\varphi) \subset \mathcal{R}(\varphi)$ for $\varphi \in \mathbb{R}$
- the subset of locally-finite pairs (Q, R) admitting a compatible locally-finite slicing P ∈ Slice (T) is open.

Glueing slicings

Theorem

Suppose $\mathcal{M} \subset \mathcal{T}$ is thick and $(\mathcal{Q}, \mathcal{R}) \in \operatorname{Slice}(\mathcal{M}) \times \operatorname{Slice}(\mathcal{T}/\mathcal{M})$. Then

- there is at most one slicing \mathcal{P} with $\mathcal{Q}(\varphi) \subset \mathcal{P}(\varphi) \subset \mathcal{R}(\varphi)$ for $\varphi \in \mathbb{R}$
- the subset of locally-finite pairs (Q, R) admitting a compatible locally-finite slicing P ∈ Slice (T) is open.

Remarks

 Local-finiteness is required in order to construct the Harder–Narasimham filtrations for the glued slicing *P*.

Glueing slicings

Theorem

Suppose $\mathcal{M} \subset \mathcal{T}$ is thick and $(\mathcal{Q}, \mathcal{R}) \in \operatorname{Slice}(\mathcal{M}) \times \operatorname{Slice}(\mathcal{T}/\mathcal{M})$. Then

- there is at most one slicing \mathcal{P} with $\mathcal{Q}(\varphi) \subset \mathcal{P}(\varphi) \subset \mathcal{R}(\varphi)$ for $\varphi \in \mathbb{R}$
- the subset of locally-finite pairs (Q, R) admitting a compatible locally-finite slicing P ∈ Slice (T) is open.

Remarks

- Local-finiteness is required in order to construct the Harder–Narasimham filtrations for the glued slicing \mathcal{P} .
- This is the key to lifting deformations of the charge Z to deformations of degenerate stability conditions.

3

イロト イヨト イヨト

Plan

- 3 Partial compactifications

イロト イボト イヨト イヨ

590

The space of degenerate stability conditions

Theorem

• There is a real manifold with boundary

$$\mathrm{DStab}_{\Lambda}(\mathcal{T}) \subset \overline{\mathrm{Stab}_{\Lambda}(\mathcal{T})}$$

with a decomposition

$$\mathrm{DStab}_{\Lambda}(\mathcal{T}) \cong \mathrm{Stab}_{\Lambda}(\mathcal{T}) \cup \bigcup_{\mathcal{M} \in \mathcal{M}} \mathbb{R} \times \mathrm{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M})$$

where M is the set of massless subcategories \mathcal{M} with $\operatorname{rk} \Lambda_{\mathcal{M}} = 1$.

nan

Image: A math a math

The space of degenerate stability conditions

Theorem

• There is a real manifold with boundary

$$\mathrm{DStab}_{\Lambda}(\mathcal{T}) \subset \overline{\mathrm{Stab}_{\Lambda}(\mathcal{T})}$$

with a decomposition

$$\mathrm{DStab}_{\Lambda}(\mathcal{T}) \cong \mathrm{Stab}_{\Lambda}(\mathcal{T}) \cup \bigcup_{\mathcal{M} \in \mathcal{M}} \mathbb{R} \times \mathrm{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M})$$

where *M* is the set of massless subcategories \mathcal{M} with $\operatorname{rk} \Lambda_{\mathcal{M}} = 1$.

The boundary component where objects in M are massless has a deleted neighbourhood isomorphic to

$$\operatorname{Stab}_{\Lambda_{\mathcal{M}}}(\mathcal{M}\,)\times\operatorname{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M}\,)\cong \mathbb{C}\times\operatorname{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M}\,)\,.$$

< □ > < @ >

The space of quotient stability conditions

The charge map extends continuously to $\mathcal{Z} \colon \mathrm{DStab}_{\Lambda}(\mathcal{T}) \to \mathsf{Hom}(\Lambda, \mathbb{C})$, but no longer has discrete fibres over the boundary components.

The space of quotient stability conditions

The charge map extends continuously to $\mathcal{Z} : \mathrm{DStab}_{\Lambda}(\mathcal{T}) \to \mathsf{Hom}(\Lambda, \mathbb{C})$, but no longer has discrete fibres over the boundary components.

Definition

Forgetting the phases of massless objects we obtain the space of quotient stability conditions

$$\operatorname{QStab}_{\Lambda}(\mathcal{T}) \cong \operatorname{Stab}_{\Lambda}(\mathcal{T}) \cup \bigcup_{\mathcal{M} \in \mathcal{M}} \operatorname{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M})$$

whose charge map is a local homeomorphism on each stratum. We recover $\mathrm{DStab}_{\Lambda}(\mathcal{T})$ by performing a real blowup along each boundary stratum.

イロト 不得 トイヨト イヨト

The space of quotient stability conditions

The charge map extends continuously to $\mathcal{Z} : \mathrm{DStab}_{\Lambda}(\mathcal{T}) \to \mathsf{Hom}(\Lambda, \mathbb{C})$, but no longer has discrete fibres over the boundary components.

Definition

Forgetting the phases of massless objects we obtain the space of quotient stability conditions

$$\operatorname{QStab}_{\Lambda}(\mathcal{T}) \cong \operatorname{Stab}_{\Lambda}(\mathcal{T}) \cup \bigcup_{\mathcal{M} \in \mathcal{M}} \operatorname{Stab}_{\Lambda/\Lambda_{\mathcal{M}}}(\mathcal{T}/\mathcal{M})$$

whose charge map is a local homeomorphism on each stratum. We recover $\mathrm{DStab}_{\Lambda}(\mathcal{T})$ by performing a real blowup along each boundary stratum.

The actions of $\operatorname{Aut}_{\Lambda}(\mathcal{T})$ and G extend to $\operatorname{DStab}_{\Lambda}(\mathcal{T})$ and $\operatorname{QStab}_{\Lambda}(\mathcal{T})$.

NB, DP, DP, JW

Plan

- Overview and motivation
- 2 Degenerate stability conditions
- 3 Partial compactifications
- 4 Related constructions
- 5 Two-dimensional examples

イロト イヨト イヨト イヨ

Alternative approaches

Metric completion (Bolognese '19)

Under certain conditions, Bolognese constructs a metric completion of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ whose boundary points correspond to stability conditions on quotients of \mathcal{T} by thick subcategories. This should be closely related to $\operatorname{QStab}_{\Lambda}(\mathcal{T})$, but it is difficult to compare our notion of support with her notion of 'limiting support'.

Alternative approaches

Metric completion (Bolognese '19)

Under certain conditions, Bolognese constructs a metric completion of $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ whose boundary points correspond to stability conditions on quotients of \mathcal{T} by thick subcategories. This should be closely related to $\operatorname{QStab}_{\Lambda}(\mathcal{T})$, but it is difficult to compare our notion of support with her notion of 'limiting support'.

Thurston compactification (Bapat, Deopurkar, Licata '20)

Bapat, Deopurkar and Licata constuct a 'Thurston compactification' of $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ for $\mathcal{T} = \mathcal{D}(\Gamma_2 Q)$ by embedding it into projective space using the mass functionals. They conjecture that the closure of the image is a compact manifold with boundary and interior $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$. This holds in the A_2 case and our partial compactification embeds in it.

Sac

イロト 不得下 イヨト イヨト 二日

Plan

- Overview and motivation
- 2 Degenerate stability conditions
- 3 Partial compactifications
- 4 Related constructions
- 5 Two-dimensional examples

Two-dimensional stability spaces

Let $\mathrm{rk}\,\Lambda=2.$ Then $\mathrm{Stab}_\Lambda(\mathcal{T}\,)/\mathbb{C}$ is a non-compact Riemann surface, and

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})\cong\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}\times\mathbb{C}$

because all bundles on non-compact surfaces are holomorphically trivial.

Two-dimensional stability spaces

Let $\mathrm{rk}\,\Lambda=2.$ Then $\mathrm{Stab}_\Lambda(\mathcal{T}\,)/\mathbb{C}$ is a non-compact Riemann surface, and

 $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \cong \operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \times \mathbb{C}$

because all bundles on non-compact surfaces are holomorphically trivial.

Theorem

• Boundary points of $\operatorname{QStab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ are logarithmic singularities of

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}Hom(\Lambda,\mathbb{C}) \cong \mathbb{CP}^1.$

イロト (四) (三) (三) (二) (つ)

Two-dimensional stability spaces

Let $\operatorname{rk} \Lambda = 2$. Then $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ is a non-compact Riemann surface, and

 $\operatorname{Stab}_{\Lambda}(\mathcal{T}) \cong \operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \times \mathbb{C}$

because all bundles on non-compact surfaces are holomorphically trivial.

Theorem

• Boundary points of $\operatorname{QStab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ are logarithmic singularities of

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}Hom(\Lambda,\mathbb{C}) \cong \mathbb{CP}^1.$

• s massless stable \iff s simple in heart \mathcal{H} with \mathcal{H}_{s}^{\flat} , \mathcal{H} , \mathcal{H}_{s}^{\sharp} algebraic.

イロト (四) (三) (三) (二) (つ)

Proposition

The following are equivalent:

• some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases

イロト イポト イヨト イヨ

590

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases
- $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ is a single free G orbit

イロト イポト イヨト イヨ

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases
- $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ is a single free G orbit
- there are no algebraic hearts and $\operatorname{QStab}_{\Lambda}(\mathcal{T}) = \operatorname{Stab}_{\Lambda}(\mathcal{C})$.

イロト イポト イヨト イヨ

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases
- $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ is a single free G orbit
- there are no algebraic hearts and $\operatorname{QStab}_{\Lambda}(\mathcal{T}) = \operatorname{Stab}_{\Lambda}(\mathcal{C})$.

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \cong \mathbb{D}$ with Bridgeland metric descending to Poincaré metric.

- ロト - 何ト - ヨト - ヨト

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases
- $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ is a single free G orbit
- there are no algebraic hearts and $\operatorname{QStab}_{\Lambda}(\mathcal{T}) = \operatorname{Stab}_{\Lambda}(\mathcal{C})$.

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \cong \mathbb{D}$ with Bridgeland metric descending to Poincaré metric.

Examples

 Stab(X) where X is a smooth C-projective curve of genus g > 0 [Bridgeland '07, Macri '07]

Proposition

The following are equivalent:

- some $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ has dense phases
- all $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ have dense phases
- $\operatorname{Stab}_{\Lambda}(\mathcal{T})$ is a single free G orbit
- there are no algebraic hearts and $\operatorname{QStab}_{\Lambda}(\mathcal{T}) = \operatorname{Stab}_{\Lambda}(\mathcal{C})$.

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \cong \mathbb{D}$ with Bridgeland metric descending to Poincaré metric.

Examples

- Stab(X) where X is a smooth C-projective curve of genus g > 0 [Bridgeland '07, Macri '07]
- Stab(Q) where Q is a 2-vertex quiver with oriented loops
 [Dimitrov, Haiden, Katzarkov and Kontsevich '14]

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

イロト イボト イヨト イヨ

590

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

Proposition (Wall-and-chamber structure)

In $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$

• each wall is isomorphic to \mathbb{R}

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

Proposition (Wall-and-chamber structure)

In $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$

- each wall is isomorphic to \mathbb{R}
- walls correspond to 'non-trivial' algebraic hearts (up to shift)

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

Proposition (Wall-and-chamber structure)

In $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$

- each wall is isomorphic to \mathbb{R}
- walls correspond to 'non-trivial' algebraic hearts (up to shift)
- masses of the two simples vanish at ends of the wall

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

Proposition (Wall-and-chamber structure)

In $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$

- each wall is isomorphic to \mathbb{R}
- walls correspond to 'non-trivial' algebraic hearts (up to shift)
- masses of the two simples vanish at ends of the wall
- no two walls intersect

イロト イヨト イヨト

Suppose there is $\sigma \in \operatorname{Stab}_{\Lambda}(\mathcal{T})$ with non-dense phases. Equivalently \mathcal{T} has an algebraic heart. Assume $\Lambda = K(\mathcal{T}) \cong \mathbb{Z}^2$.

Proposition (Wall-and-chamber structure)

In $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$

- each wall is isomorphic to \mathbb{R}
- walls correspond to 'non-trivial' algebraic hearts (up to shift)
- masses of the two simples vanish at ends of the wall
- no two walls intersect
- each chamber is isomorphic to \mathbb{D} .

• The 'dual graph' Γ_{T} of *G*-orbit structure is the Speiser graph of

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}\operatorname{Hom}(\Lambda,\mathbb{C}).$

NR	DP	DP	1\//
чD,	D 1	, Di ,	200

(日)

590

• The 'dual graph' $\Gamma_{\mathcal{T}}$ of *G*-orbit structure is the Speiser graph of

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}\operatorname{Hom}(\Lambda,\mathbb{C}).$

• If $\Gamma_{\mathcal{T}}$ is acyclic then $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ is either \mathbb{C} or \mathbb{D} .

イロト イヨト イヨト イ

- The 'dual graph' $\Gamma_{\mathcal{T}}$ of *G*-orbit structure is the Speiser graph of $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}\operatorname{Hom}(\Lambda, \mathbb{C}).$
- If $\Gamma_{\mathcal{T}}$ is acyclic then $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ is either \mathbb{C} or \mathbb{D} .
- If there are finitely many logarithmic values then

$$\mathrm{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \cong \begin{cases} \mathbb{C} \\ \mathbb{D} \end{cases} \iff \text{random walk on } \Gamma_{\mathcal{T}} \text{ is } \begin{cases} \text{recurrent} \\ \text{transient} \end{cases}$$

by [Doyle '97].

(日)

• The 'dual graph' Γ_T of *G*-orbit structure is the Speiser graph of

 $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \to \mathbb{P}\operatorname{Hom}(\Lambda,\mathbb{C}).$

- If $\Gamma_{\mathcal{T}}$ is acyclic then $\operatorname{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C}$ is either \mathbb{C} or \mathbb{D} .
- If there are finitely many logarithmic values then

$$\mathrm{Stab}_{\Lambda}(\mathcal{T})/\mathbb{C} \cong \begin{cases} \mathbb{C} \\ \mathbb{D} \end{cases} \iff \mathsf{random walk on } \Gamma_{\mathcal{T}} \mathsf{ is } \begin{cases} \mathsf{recurrent} \\ \mathsf{transient} \end{cases}$$

by [Doyle '97].

 It is recurrent if vertices of Γ_T embed in R² with bounded below pairwise distances and bounded above edge lengths [Doyle, Snell '84].

< ロ ト < 同 ト < 三 ト < 三 ト

The simplest interesting example...

NB, DP, DP, JW	NB,	DP,	DP,	JW
----------------	-----	-----	-----	----

... and its 2-Calabi-Yau cousin

 $\mathcal{T}=\mathcal{D}(\Gamma_2A_2)$ [Thomas '06; Bridgeland '09; Qiu '11; Bridgeland, Qiu, Sutherland '20]

Spherical twists about simples s and t of the standard heart generate subgroup Br_3 of automorphisms. There is a free Br_3 orbit of chambers.

< 150 b

... and its 2-Calabi-Yau cousin

 $\mathcal{T}=\mathcal{D}(\Gamma_2A_2)$ [Thomas '06; Bridgeland '09; Qiu '11; Bridgeland, Qiu, Sutherland '20]

Spherical twists about simples s and t of the standard heart generate subgroup Br_3 of automorphisms. There is a free Br_3 orbit of chambers.

Walk transient so $\operatorname{Stab}(\Gamma_2 A_2)/\mathbb{C} \cong \mathbb{D}$; twists act by ideal rotations.

NB, DP, DP, JW

< 150 b
A discrete derived category

 $\mathcal{T} = \mathcal{D}(Q_{1,2,0})$ [W '18; Broomhead, Pauksztello, Ploog '16]

The bounded derived category of the quiver with relations

$$Q_{1,2,0}: \quad \bullet \rightleftharpoons^{\alpha}_{\beta} \geq \bullet \qquad \alpha\beta = 0$$

is discrete. One simple module s is spherical, the other t_0 is exceptional.

A discrete derived category

 $\mathcal{T} = \mathcal{D}(Q_{1,2,0})$ [W '18; Broomhead, Pauksztello, Ploog '16]

The bounded derived category of the quiver with relations

$$Q_{1,2,0}: \quad \bullet \rightleftharpoons^{\alpha}_{\beta} \succeq \bullet \qquad \alpha\beta = 0$$

is discrete. One simple module s is spherical, the other t_0 is exceptional.

Walk recurrent so $\operatorname{Stab}(Q_{1,2,0})/\mathbb{C} \cong \mathbb{C}$; twist acts by translation.

NB, DP, DP, JW

Coherent sheaves on \mathbb{CP}^1

$\mathcal{T} = \mathcal{D}(\mathbb{P}^1)$ [Okada '06, Macri '07]

Infinitely many asymptotic values where line bundles O(n) massless.

MR	DP	DP	1\//
ND,	ы,	ы,	200

イロト イボト イヨト イヨト

Coherent sheaves on \mathbb{CP}^1

$\mathcal{T} = \mathcal{D}(\mathbb{P}^1)$ [Okada '06, Macri '07]

Infinitely many asymptotic values where line bundles O(n) massless.

 \mathcal{O}_{x}

<ロト < 団ト < 団ト < 団ト < 団