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Overview and motivation

Background

Set up

T triangulated category

Λ finite rank free quotient of K (T )

AutΛ(T ) subgroup of autoequivalences descending to Λ

Bridgeland stability spaces

The Bridgeland stability space StabΛ(T )
Z−→ Hom(Λ,C)

is a non-compact C-manifold locally homeomorphic to Hom(Λ,C)

has a left AutΛ(T ) action

and a right G = G̃L+
2 R action with C = C̃∗ acting freely.

Stability spaces are conjecturally contractible (when non-empty) and to
simplify the exposition I assume they are connected!
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Overview and motivation

Overview

Goal

Construct modular partial compactification of StabΛ(T )

Motivation

Obtain information about

1 the boundary of StabΛ(T )

2 the wall-and-chamber structure of StabΛ(T )

3 the relation between stability spaces of T and its quotients.

Approach

Allow stability conditions with massless objects!
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Degenerate stability conditions

Pre-stability conditions

A pre-stability condition is a pair (P,Z ) where

P(ϕ) is a full additive subcategory of T for ϕ ∈ R
Z : Λ→ C is a homomorphism

satisfying

1 P(ϕ+ 1) = P(ϕ)[1]

2 ϕ > ψ =⇒ Hom(P(ϕ),P(ψ)) = 0

3 t ∈ P(ϕ) =⇒ Z (t) = m(t) exp(iπϕ) for m(t) > 0

4 for each t there are sj ∈ P(ϕj) with ϕ0 > · · · > ϕn and a filtration

0 t0 · · · tn−1 tn t

s0 sn
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Degenerate stability conditions

Stability conditions and spaces

Support property

A stability condition (P,Z ) is a pre-stability condition such that

inf

{
m(t)

||t||
: t semistable

}
> 0

where || · || is (any) norm on Λ⊗ R. This implies P(I ) is a quasi-abelian
length category whenever |I | < 1, in particular P is a locally-finite slicing.

Stability spaces

The Bridgeland stability space

StabΛ(D ) ⊂ Slice (T )× Hom(Λ,C)

is the subset of stability conditions with the subspace topology.
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Degenerate stability conditions

Degenerate stability conditions

Degenerate stability condition

A degenerate stability condition is a pair (P,Z ) such that

t ∈ P(ϕ) =⇒ Z (t) = m(t)e iπϕ with m(t) ≥ 0

satisfying the weakened support property

inf

{
m(t)

||t||
: t stable,m(t) 6= 0

}
> 0.

Remarks

1 The slices P(ϕ) are quasi-abelian but not necessarily abelian.

2 The slicing P is not necessarily locally-finite.

3 Any (P,Z ) in StabΛ(T ) is a degenerate pre-stability condition.
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Degenerate stability conditions

Massless subcategories and quotient stability conditions

Proposition

Let (P,Z ) be a degenerate stability condition. Then

1 The massless subcategory M = {t ∈ T : m(t) = 0} is thick

2 P(I ) ∩M is a Serre subcategory of P(I ) when |I | = 1

3 P restricts to a slicing PM of M
4 P descends to a slicing PT/M of T/M.

Corollary

Let ΛM be the saturation of the image of K (M)→ K (T )→ Λ. Then

(PT/M,Z ) ∈ StabΛ/ΛM(T /M )

Roughly, a degenerate stability condition consists of a massless part, a
slicing on M, and a massive part, a stability condition on T/M.
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Degenerate stability conditions

Glueing slicings

Theorem

Suppose M⊂ T is thick and (Q,R) ∈ Slice (M)× Slice (T/M).

Then

1 there is at most one slicing P with Q(ϕ) ⊂ P(ϕ) ⊂ R(ϕ) for ϕ ∈ R
2 the subset of locally-finite pairs (Q,R) admitting a compatible

locally-finite slicing P ∈ Slice (T ) is open.

Remarks

Local-finiteness is required in order to construct the
Harder–Narasimham filtrations for the glued slicing P.

This is the key to lifting deformations of the charge Z to
deformations of degenerate stability conditions.
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Partial compactifications

The space of degenerate stability conditions

Theorem

1 There is a real manifold with boundary

DStabΛ(T ) ⊂ StabΛ(T )

with a decomposition

DStabΛ(T ) ∼= StabΛ(T ) ∪
⋃
M∈M

R× StabΛ/ΛM(T/M )

where M is the set of massless subcategories M with rkΛM = 1.

2 The boundary component where objects in M are massless has a
deleted neighbourhood isomorphic to

StabΛM(M )× StabΛ/ΛM(T/M ) ∼= C× StabΛ/ΛM(T/M ) .
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Partial compactifications

The space of quotient stability conditions

The charge map extends continuously to Z : DStabΛ(T )→ Hom(Λ,C),
but no longer has discrete fibres over the boundary components.

Definition

Forgetting the phases of massless objects we obtain the space of quotient
stability conditions

QStabΛ(T ) ∼= StabΛ(T ) ∪
⋃
M∈M

StabΛ/ΛM(T/M )

whose charge map is a local homeomorphism on each stratum. We recover
DStabΛ(T ) by performing a real blowup along each boundary stratum.

The actions of AutΛ(T ) and G extend to DStabΛ(T ) and QStabΛ(T ).
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DStabΛ(T ) by performing a real blowup along each boundary stratum.

The actions of AutΛ(T ) and G extend to DStabΛ(T ) and QStabΛ(T ).
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Related constructions

Alternative approaches

Metric completion (Bolognese ’19)

Under certain conditions, Bolognese constructs a metric completion of
StabΛ(T ) whose boundary points correspond to stability conditions on
quotients of T by thick subcategories. This should be closely related to
QStabΛ(T ), but it is difficult to compare our notion of support with her
notion of ‘limiting support’.

Thurston compactification (Bapat, Deopurkar, Licata ’20)

Bapat, Deopurkar and Licata constuct a ‘Thurston compactification’ of
StabΛ(T )/C for T = D(Γ2Q) by embedding it into projective space using
the mass functionals. They conjecture that the closure of the image is a
compact manifold with boundary and interior StabΛ(T )/C. This holds in
the A2 case and our partial compactification embeds in it.
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Two-dimensional examples

Two-dimensional stability spaces

Let rkΛ = 2. Then StabΛ(T )/C is a non-compact Riemann surface, and

StabΛ(T ) ∼= StabΛ(T )/C× C

because all bundles on non-compact surfaces are holomorphically trivial.

Theorem

Boundary points of QStabΛ(T )/C are logarithmic singularities of

StabΛ(T )/C→ PHom(Λ,C) ∼= CP1.

s massless stable ⇐⇒ s simple in heart H with H[s , H, H]s algebraic.
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Two-dimensional examples

Dense phase case

Proposition

The following are equivalent:

some σ ∈ StabΛ(T ) has dense phases

all σ ∈ StabΛ(T ) have dense phases

StabΛ(T ) is a single free G orbit

there are no algebraic hearts and QStabΛ(T ) = StabΛ(C ).

StabΛ(T )/C ∼= D with Bridgeland metric descending to Poincaré metric.

Examples

1 Stab(X ) where X is a smooth C-projective curve of genus g > 0
[Bridgeland ’07, Macri ’07]

2 Stab(Q ) where Q is a 2-vertex quiver with oriented loops
[Dimitrov, Haiden, Katzarkov and Kontsevich ’14]
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Two-dimensional examples

Non-dense phase case

Suppose there is σ ∈ StabΛ(T ) with non-dense phases. Equivalently T
has an algebraic heart. Assume Λ = K (T ) ∼= Z2.

Proposition (Wall-and-chamber structure)

In StabΛ(T )/C
each wall is isomorphic to R
walls correspond to ‘non-trivial’ algebraic hearts (up to shift)

masses of the two simples vanish at ends of the wall

no two walls intersect

each chamber is isomorphic to D.
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Two-dimensional examples

Speiser graphs

The ‘dual graph’ ΓT of G -orbit structure is the Speiser graph of

StabΛ(T )/C→ PHom(Λ,C).

If ΓT is acyclic then StabΛ(T )/C is either C or D.

If there are finitely many logarithmic values then

StabΛ(T )/C ∼=

{
C
D

⇐⇒ random walk on ΓT is

{
recurrent

transient

by [Doyle ’97].

It is recurrent if vertices of ΓT embed in R2 with bounded below
pairwise distances and bounded above edge lengths [Doyle, Snell ’84].
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Two-dimensional examples

The simplest interesting example...

T = D(A2) [King ’00s; Qiu ’11]

e

s

t

Random walk recurrent so Stab(A2 )/C ∼= C; Serre functor rotates.
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Two-dimensional examples

... and its 2-Calabi–Yau cousin

T = D(Γ2A2) [Thomas ’06; Bridgeland ’09; Qiu ’11; Bridgeland, Qiu,
Sutherland ’20]

Spherical twists about simples s and t of the standard heart generate
subgroup Br3 of automorphisms. There is a free Br3 orbit of chambers.

s

e

t

Walk transient so Stab(Γ2A2 )/C ∼= D; twists act by ideal rotations.
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Two-dimensional examples

A discrete derived category

T = D(Q1,2,0) [W ’18; Broomhead, Pauksztello, Ploog ’16]

The bounded derived category of the quiver with relations

Q1,2,0 : • •α

β
αβ = 0

is discrete. One simple module s is spherical, the other t0 is exceptional.

s

. . . t−1 t0 t1 . . .

Walk recurrent so Stab(Q1,2,0 )/C ∼= C; twist acts by translation.
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Two-dimensional examples

Coherent sheaves on CP1

T = D(P1) [Okada ’06, Macri ’07]

Infinitely many asymptotic values where line bundles O(n) massless.

Ox

. . . O(−1) O O(1) . . .
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