From gentle to string algebras:
a geometric model
jut. work with Karin Bour
§1. String and gentle algebras - background
Definition - $A=R Q / I$ string algebra if:
(SI) $\forall i \in Q_{0}, \exists$ at most two arrows starting at i \& \exists at most two arrows ending at i.
(S2) $\forall a \in Q_{1}, \exists$ at most one arrow $b s t$. ba $\notin I$ \& \exists at most one arrow c st. $a c \notin I$.
(S3) I generated by paths of length $\geqslant 2$.

- A gentle algebra if additionally:
$\left(S 2^{\prime}\right) \quad \forall a \in Q_{n}, \exists$ at most one arrow b'st. baa $\in I$ \& \exists at most one arrow c^{\prime} s.t. $a c^{\prime} \in I$.
\& (S3') I generated by paths of length 2 .

Examples

$$
1 \underset{b}{\stackrel{a}{\rightarrow}} 2
$$

Definitions

* Given $a \in Q_{1}$, define a formal inverse a^{-1} st. $s\left(a^{-1}\right)=t(a) \& t\left(a^{-1}\right)=s(a)$.
* walk $=$ sequence $w=w_{1} \cdots w_{r}$ st. $t\left(w_{i}\right)=s\left(w_{i+1}\right)$, with $w_{i} \in Q_{1}^{ \pm 1}$.
* string $=$ walk with no subwalks of the form $a a^{-1}$ or $a^{-1} a \quad\left(a \in Q_{1}\right)$ or subwalks v with $v \in I$ or $v^{-1} \in I$.
* Trivial strings: $e_{i}, i \in Q_{0}$.
* Bands: $b=b_{1} \ldots b_{n}=$ cyclic string $\left(t\left(b_{n}\right)=s\left(b_{1}\right)\right)$ s.t. any power b^{m} of b is a string but b itself is not a proper power of any string.

Examples

$1 \underset{b}{\stackrel{a}{\longrightarrow}} 2$
$a b^{-1}$ band \& string $a b^{-1} a b^{-1}$ string but not a band.
$e b^{-1}$ string $\quad \Rightarrow$ bands
ec not string
$e b^{-1} b$ not string
Representation theory of string algebols:

- indec. modules - string modules

Gelfand - Ponomarev

- band modules

Wald- Waschbüsch

- morphisus Crawley-Boevey; Krause
- AR-sequences Butler-Ringel.
\S Representation theory via surfaces - why?
* Description of extensions between modules [C,anakc,-Schroll,

Canaki: - Pauksztello-Schroll]

* τ-tilting theory:
[Adachi- Iyama - Reiten]
cf. Palu-Pilaud-Plamendon
Brüstle - Douville - Mousavand - Thomas - Yildirim
He-zhow-zlun: classification of sumnort τ-kiting for skew-gentle algs.
- propurties of τ-tilting graph in geuth case.
[fu-Geng-Lin-zhou]
* Bridgeland/King stability conditions
[Garcia-Garver] - classification of semistable repns when $S=$ disc.
* Link to Fukaya catgs in symplectic geemerry [Lekiii-Polishdmuk]
* ヨ geometric model of $D^{b}(\underset{\sim}{(A)}$ gentle [Oppos-Plamandon-Schroll \leadsto used to sludy devived equivalences -Amiot- Plamondon-Scholl: On [Broomhead] DDCS; Braver graph algs - [Omiot-Plamondon-Scholl

S2. Representation theory of gentle algs via surfaces
Theorem_(Baur-CS)
(1) Let A be a finite dims alg. TFAE

* A is the endomorphisms algebra of a partial cluster-xiting object of a generalised cluster eatg associated to some unpunctwred surface
[Bristle-zhang]
Particular cases: P triangulation \rightarrow Jacobian algs. ([Assem- Brä̈stle-CharbonneauPlamondon])
- P cut of a triangulation \rightarrow surface algs (David-Roesler-Schiffler]

Theorem 1 (Baur-CS)
(2) A gentle algebra, (S, M, P) corresponding tiling

* indecomposable modules string modules $\stackrel{1-1}{\longleftrightarrow}$ equivalence classes of permissible
band modules \leftrightarrows homotopy classes of certain permissible closed curves closed curves
(intosection with $p \geqslant 2$).
number
* $M=M(\gamma)$ string module, γ corresponding arc

$$
M\left(\gamma_{s}\right)
$$

irreducible: $M(\gamma) \nearrow \quad \gamma_{s}, \gamma_{e}$ obtained from γ by pivot elementary
morphisms $M\left(\gamma_{e}\right)$ manes on their endpoints

* AR-sequences are of the form:

$$
\begin{aligned}
0 \rightarrow M(\gamma) \rightarrow M\left(\gamma_{s}\right) \oplus M\left(\gamma_{e}\right) & \rightarrow M\left(\gamma_{s, e}\right) \rightarrow 0 . \\
& \tau^{-1} \gamma=\gamma_{s, e}=\left(\gamma_{s}\right)_{e}=\left(\gamma_{e}\right)_{s} .
\end{aligned}
$$

S unpunctured oriented, connected surface with boundary ∂S M finite set of marked pts on ∂S.
(S, M) marked surface.
Arc in $(S, M):$ curve $\gamma:[0, D \rightarrow S$ s.t.

* $\gamma(0), \gamma(1) \in M$
* $\gamma \cap M$ only at its endpts
* r does not cut a monogon or dijon

P partial triangulation $=$ collection of arcs that do not intersect themselves on each other in the interior of S.
(S, M, P) tiling s.t. P divides S into the following regions/tiles:
* m-gons $(m \geqslant 3)$: edges are arcs in P or boundary segments \& \nexists unmarked body components in its interior.
* 1-gon

* 2-gon

Definition A_{p} tiling algebra associated to $(S, M, P) \quad A=k Q_{p} / I_{p}$

* $\left(Q_{P}\right)_{0} \stackrel{1-1}{\longleftrightarrow}$ arcs in P
* ∂ arrow $i \xrightarrow{a} j$ if

* Ip generated by: * paths $a b$ st $p_{a} \neq p_{b}$
* paths ab st $t(a)=s(b)$ is a loop arc

Es.

Example: permissible, equivalence of arcs, pinot elementary move, $A R$-translate

$\tau^{-1}(\gamma)$ $b^{\prime \prime} c d^{-1} e b^{-1}$
§3. Representation theory of string algebras via surfaces

Theorem 2 (Baur-CS)
(1) A string algebra $\Longleftrightarrow A$ is a labelled tiling algebra associated to

(2) A string algebra, (S, M, P, L) corresponding labelled filing

- indecomposable modules string modules $\stackrel{1-1}{\longleftrightarrow}$ equivalence classes of permissible band modules $\underset{1-1}{\leftrightarrows}$ homotopy classes of certain permissible closed curves
new condition on permissible: does not cross labels
* $M=M(\gamma)$ string module, γ corresponding arc

$$
M\left(\gamma_{s}\right)
$$

irreducible : $M(\gamma) \nearrow \quad \gamma_{s}, \gamma_{e}$ obtained from γ by pivot elementary
morphisms

$$
M\left(\gamma_{e}\right) \quad \underset{\downarrow}{\operatorname{moves}} \text { on their endpoints }
$$ depend on labels

* AR-sequences are of the form:

$$
\begin{aligned}
& O \rightarrow M(\gamma) \rightarrow M\left(\gamma_{s}\right) \oplus M\left(\gamma_{e}\right) \rightarrow M\left(\gamma_{s, e}\right) \rightarrow O \\
& \underbrace{\gamma_{s, e}=\left(\gamma_{s}\right)_{e}=\left(\gamma_{e}\right)_{s}}_{\text {true if } \gamma \text { not injective }}
\end{aligned}
$$

Example

$\tau^{-1}(\gamma)$

§4. An application: τ-tilting theory
Def n. A finite dim^{n} alg, $M \in \bmod A$.

* $M \underline{\tau \text {-rigid }}$ if $\operatorname{Hom}(M, \tau M)=0$.

$$
|M|=\# \text { non-isomorphic indec. }
$$ direct summands of M.

* M z-tiling if M-rigid \& $|M|=|A|$.
* M support τ-tiling if \exists idempotent $e \in A$ s.t. M is τ-tiling ($A /\langle e\rangle$)-module.
* support τ-tiling pair : (P, M) st. $* \operatorname{Hom}(P, M)=0$
* M τ-rigid
* $|M|+|P|=|A|$.

Fact [AIR]:
M support τ-tilting $\Leftrightarrow \ni$ pho. P s.t. (P, M) is support τ-tilting pair.
[He-zhou-zhu] If A is gentle, may incucue arsing

Conjecture (Baur-CS) A string alg. $\left\{\begin{array}{c}\text { support } \tau \text {-tilting } \\ \text { pairs }\end{array}\right\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{cc}\text { maximal collections of permissible } \\ \text { arcs for which each crossing }\end{array}\right\}$ satisfies

Examples

$\left(P_{S}, 4 \oplus 1 \oplus f^{-1} c \oplus a b\right) \quad$ support τ-tilting over string algebra (but not the gentle alg.)

