LATTICES AND THICK SUBCATEGORIES

jt with g. Stouenson (in progress)

T - essentially small triangulated category

Def: A subcategory L = T is <u>thick</u> if L is a triangulated subcategory closed under summands.

Thick (T) = {thick subcategories of T}

Back to Example 1 $Q = \cdot D$ $\longrightarrow kQ = k[x], T := D^{b}(k[x])$

$$T := D^{b} (hLx])$$

$$Theorem : [Hopkins - Neeman]$$

$$Thick (T) \cong \left\{ \begin{array}{l} specialisation \ closed \\ subsets \ of \\ spec \ hLx] \end{array} \right\}$$

In particular: \exists topological space Xand a lattice isomorphism Thick (T) $\cong G(X) = \{U \subseteq X \mid U \text{ open}\}$

$\mathbf{\dot{\mathbf{C}}}$

ma In Example 1: "Thich subcategories are controlled by a space."

This is atypical in the coord of representation theory! Example 2: Take the minersal cover of .?:

$$Q = \cdots \cdots \cdots \cdots \cdots$$

$$T := D^{b}(kQ)$$

$$\underline{Theorem}: [G. - Stevenson]$$

$$Thick(T) \cong NC(Z \cup \{-\infty\})$$

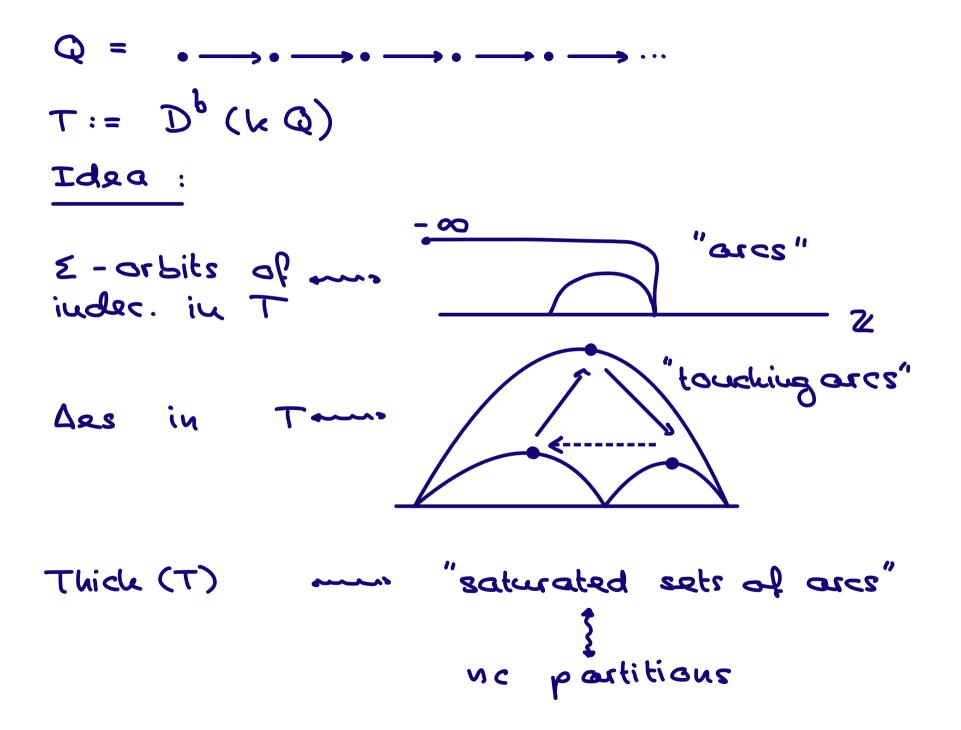
$$\angle nou-crossing partitions$$

$$\mathcal{L} - linearly ordered set$$

$$P = \{B_i \mid i \in I\} \text{ partition of } \mathcal{L} = \coprod B_i \cdot \cdots$$

$$P = \{B_i \mid i \in I\} \text{ partition of } \mathcal{L} = \coprod B_i \cdot \cdots$$

$$P \text{ is } \underline{nou-crossing} \text{ if } x, y \in B_i; u, v \in B_j$$
with $x < u < y < v \Rightarrow B_i = B_j$



The lattice Thick $(D^{b}(le...,le...)) \cong NC(\mathbb{Z} \amalg (-\infty))$ is of a very different flavour than the lattice Thich $(D^{\flat}(k; \mathbb{Q})) \cong \mathcal{O}(X)$. In particular, it is not of the form O(X) for any space X. La How can case see that?

Let's analyse $\mathfrak{O}(X)$ for X a space. This is a lattice under \subseteq with $\Lambda = \cap$ and V = U. If $U,V,W \in \mathfrak{O}(X)$ then $U \cap (V \cup W) = (U \cap V) \cup (U \cap W)$

Def: Let L be a lattice. We say that L is <u>distributive</u> if V l, m, n E L : l N (m Vn) = (l Nm) V (l Nn).

Key observation:
Thick
$$(D^{b}(kQ))$$
 is not distributive.
Consider the non-split short exact
sequence
 $O \rightarrow S_{1} \rightarrow H \rightarrow S_{2} \rightarrow O$
in mod(kQ).
 $Q = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow \cdots$

 $\bigcirc \rightarrow S_1 \rightarrow H \rightarrow S_2 \rightarrow \bigcirc$ M, S, Sz : these are all exceptional A = thich(H), $B_1 = thich(S_1)$, $B_2 = thich(S_2)$ $A \land (B \lor B) = A \cap thick(S, S_2) = A$ # $(A \land B_1) \lor (A \land B_2) = O \lor O = O$ => Thick $(D^{b}(LQ)) \ncong G(X)$ for any space X.

() For a lattice L to satisfy L ≅ @ (X) we need L to be distributive. But: This is not enough. We need an infinite analogue: U, lViliEI3 apren subspaces of X $U \cap \left(\bigcup_{i \in T} V_i \right) = \bigcup_{i \in T} \left(U \cap V_i \right) .$ =>

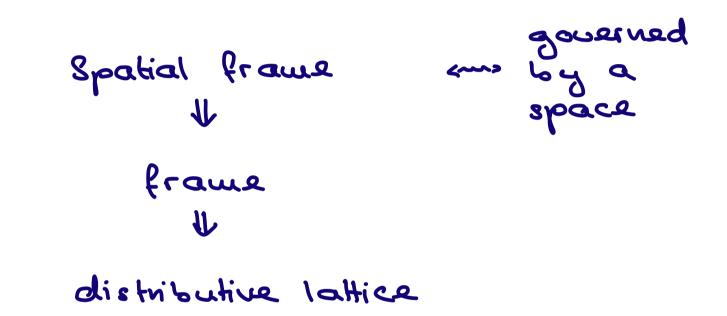
<u>Def</u>: A lattice L is a <u>frame</u> if for all l, twilleI3 in L we have $l \land (V_{i \in I} w_i) = \bigvee_{i \in I} (l \land w_i).$

② For a lattice L to satisfy
L ≅ G(X)
we need L to be <u>a frame</u>.
But: This is <u>still</u> not enough.

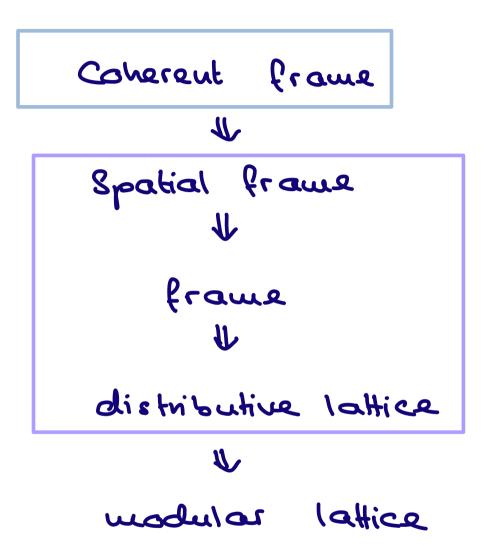
 $\frac{Def:}{Def:} A \text{ frame } L \text{ is called } \frac{\text{spatial}}{\text{spate}}$ if there exists a space X such that $L \cong O(X).$ Duh.

One can describe this in terms of points of a lattice.

To scimarize:



Buestion: When is Thick (T) a spatial frame for an essentially small triangulated eategory T? <u>Thu:</u> [G. - Stevenson] Thick (T) is a spatial frame Thick (T) is distributive. Corollary: If for all L, M, N \in Thick(T): L \cap thick (M, N) = thich (L \cap M, L \cap N) then there exists an up to isomorphism unique sober space X such that Thick (T) \cong O(X).



Bade to Example 1 Q = ·D $\sim kQ = kTxJ, T = D^{b}(kTxJ)$ Theorem : [Hopkins - Neeman] Thick (T) = { specialisation closed } Speck[x] \cong G(x) L'this is <u>almost</u> Spec k[x]

If R is a commutative ring them Spec R is a very vice space.

C1 It is quasi-compact C2 Every irreducible closed subset sober leas a unique generic point] C3 It has a basis of quasi-compact open subsets closed under finite intersections

A topological space satisfying C1 - C3 is called <u>coherent</u> (or <u>spectral</u>).

Thus: I Hodister J If X is coherent then there exists a commutative ring R such that $X \cong Spec R$.

Q: If Thick (T) $\cong O(X)$, i.e. if Thick (T) is distributive,

- how nice is the space X?
- when is X coherent?

Let T be an essentially small triangulated category s.t. Thick (T) is distributive. Let X be s.t. Thick $(T) \cong O(X)$. Leuna: - Every irreducible closed subset of X has a mique generic poiut - X has a basis of quasi-compact open subsets mo promising ...

For X to be coherent cove'd additionally need () C1: X is quasi-compact. (2) C3 part II: the intersection of two quasi-compat open subsets is quasi-compact Do we always have ()? (2) ?

AC1: X is quasi-compact. Do we alwayshous ()? bo. Example : T = Dbors (modulx]) ={X E D^b (molle[x]) H*X is f.d.} - Thicle (D (mod k(x))) Thick (T) distributive

- => Thick (T) distributive
- => Thidu(T) is a spatial frame

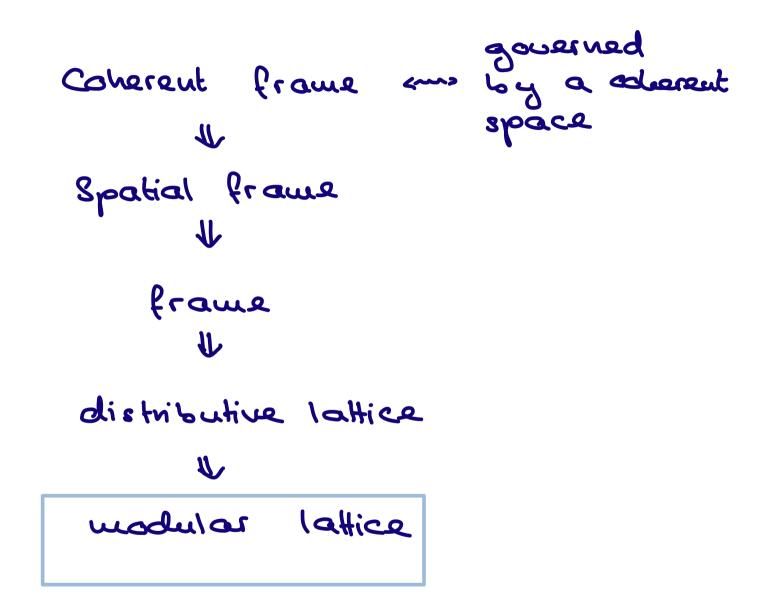
T consists of tubes labelled by absed pts of A'.
Inide(T) ≅ ⊕ Thich(k(d))
K∈A'rba?
T is <u>not</u> finitely generated, i.e.
thore exists up g∈ T such that
thick(g) = T.
=> X is <u>not</u> quasi-compact.

So : Thich (T) = O(X) ≠ X coherent.

2 C3 part II: the intersection of two quasi-compact open subsets is quasi-compact.

Do we alwayshave ??

We don't levoce. Probablez NO.



Hotivating example R - ing M - R-module Sub(M) lattice of submodules of M. $\Lambda = \Pi$, V = +usually not distr.

$$\frac{E \times auple :}{\langle (1,1) \rangle} = \frac{72}{272} \oplus \frac{72}{272} = \frac{1}{272} \langle (1,1) \rangle = \langle (1,1) \rangle = \frac{1}{272} \langle (1,1) \rangle$$

But: Sub(M) is always woodenlar. $\frac{Def:}{Def:} A \quad lattice L \quad is \quad woodenlas \quad if$ $\forall \ l, u, u \in L \quad cesith \quad l \leq n :$ $l \lor (u \land n) = (l \lor u) \land n .$ $t \land A, B, C \in Sub(M), \quad A \leq C$ $\Rightarrow \land A + (B \land C) = (A + B) \land C . \exists$ L distributive => L madeillar. Question: 13 Thicle(T) always modeillar? NO.

e(2) has a Led structure encoded in the combinatorial picture.
Thus: [G.- 2000arena]
Thick (e(2)) ≈ NNC ([n])

NNC ([N]) = nc partitions af subparets of &1,...,nz.

 $\mathcal{P}_{i} = \{\mathcal{B}_{i} \mid i \in I\} \leq \mathcal{P}_{2} = \{\mathcal{B}_{i}^{\prime}\} \in \mathcal{I}\}$: $\Leftrightarrow \forall i \in I \exists j \in \mathcal{I} : \mathcal{B}_{i} \subseteq \mathcal{B}_{i}^{\prime}$.

