Prime thick subcategories of derived categories associated with noetherian schemes

Hiroki Matsui (Tokushima University)

October 21, 2021

Introduction

Tensor triangular geometry (Balmer)

Study a tensor triangulated category $(\mathcal{T},\otimes,1)$ via the corresponding topological space

 $\mathbf{Spec}_{\otimes}(\mathcal{T}) := \{ \text{prime ideals of } \mathcal{T} \}$

called the tensor-triangular spectrum (tt-spectrum) of \mathcal{T} .

• Very successful!!

Applied to commutative algebra, algebraic geometry, representation theory of finite groups, stable homotopy theory,...

• Cannot be applied to triangulated category without tensor structure.

Introduction

Aim

- Introduce "tensor-free" analog of prime ideals and define a topological space Spec_△(*T*) without using tensor structure.
- **2** Study these for $D^{pf}(X)$, $D^{b}(X)$, $D^{sg}(X)$ of a noetherian scheme.
 - D^{pf}(X) := the derived category of perfect complexes on X
 - D^b(X) := the derived category of bounded complexes of coherent sheaves on X
 - D^{sg}(X) := D^b(X)/D^{pf}(X): singularity category or stable derived category

First of all, let us recall Balmer's tensor triangular geometry.

Definition

- A tensor triangulated category is a triple $(\mathcal{T},\otimes,\mathbf{1})$ where
 - \mathcal{T} : a triangulated category
 - $\otimes : \mathcal{T} \times \mathcal{T} \to \mathcal{T}$, $(M, N) \mapsto M \otimes N$: an exact bifunctor
 - $\mathbf{1} \in \mathcal{T}$: unit object

satisfying

- associativity $(L \otimes M) \otimes N \cong L \otimes (M \otimes N)$
- commutativity $M \otimes N \cong N \otimes M$
- unitality $M \otimes \mathbf{1} \cong M \cong \mathbf{1} \otimes M$.

Note: commutative ring is a triple $(R, \cdot, 1_R)$ satisfying associativity, commutativity, unitality.

Example

- Let X be a noetherian scheme. Then $(D^{pf}(X), \otimes_{\mathcal{O}_X}^{\mathbb{L}}, \mathcal{O}_X)$ is a tensor triangulated category.
- Let k be a field and G a finite group. Denote by stmod kG the stable module category of kG.
 Then (stmod kG, \otimes_k, k) is a tensor triangulated category.

<u>Balmer's Idea</u>: regard ${\cal T}$ as a commutative ring with multiplication \otimes

Recall

Let R be a commutative ring.

• An additive subgroup $I \subseteq R$ is an ideal if

$$a\in R,\,\,b\in I\Longrightarrow ab\in I$$

2 An ideal $I \subseteq R$ is radical if

$$I = \sqrt{I} = \{a \in R \mid a^n \in I \ (\exists n \ge 1)\} = \bigcap_{I \subseteq \mathfrak{p}: \mathsf{prime}} \mathfrak{p}$$

3 An ideal $\mathfrak{p} \subsetneq R$ is prime if

$$\mathsf{a}\mathsf{b}\in\mathfrak{p}\Longrightarrow\mathsf{a}\in\mathfrak{p} ext{ or }\mathsf{b}\in\mathfrak{p}.$$

Spec $R := \{ \text{prime ideals of } R \}$

Tensor triangular geometry $(\mathcal{T}, \otimes, \mathbf{1})$: tensor triangulated category

Definition

 $\textcircled{0} A thick subcategory $\mathcal{I} \subseteq \mathcal{T}$ is an ideal if$

$$M \in \mathcal{T}, \ N \in \mathcal{I} \Longrightarrow M \otimes N \in \mathcal{I}.$$

2 An ideal $\mathcal{I} \subseteq \mathcal{T}$ is radical if

$$\mathcal{I} = \sqrt{\mathcal{I}} := \{ M \in \mathcal{T} \mid M^{\otimes n} \in \mathcal{I} \ (\exists n \ge 1) \} = \bigcap_{\mathcal{I} \subseteq \mathcal{P}: \mathsf{prime}} \mathcal{P}$$

 $\mathbf{Rad}_{\otimes}(\mathcal{T}) := \{ \text{radical ideals of } \mathcal{T} \}$ $\textbf{An ideal } \mathcal{P} \subsetneq \mathcal{T} \text{ is prime if}$

$$M \otimes N \in \mathcal{P} \Longrightarrow M \in \mathcal{P}$$
 or $N \in \mathcal{P}$.

 $\mathbf{Spec}_{\otimes}(\mathcal{T}) := \{ \text{prime ideals of } \mathcal{T} \}$

Example

• For a noetherian scheme X,

$$\operatorname{\mathbf{Supp}}^{-1}(W):=\{M\in\operatorname{\mathsf{D}^{pf}}(X)\mid\operatorname{\mathbf{Supp}}(M)\subseteq W\}$$

is a radical ideal of $D^{pf}(X)$ for each specialization-closed subset $W \subseteq X$.

2 Let k be a field and G a finite group. Then

$$\mathbf{V}_{G}^{-1}(W) := \{M \in \operatorname{stmod} kG \mid \mathbf{V}_{G}(M) \subseteq W\}$$

is a radical ideal of stmod kG for each specialization-closed subset $W \subseteq \operatorname{Proj} H^*(G; k)$. Here, $\mathbf{V}_G(M)$ denotes the support variety of M.

These are prime if and only if W is of the form

$$W = \{y \mid x \notin \overline{\{y\}}\}$$

for some point x of the above topological spaces

Hiroki Matsui (Tokushima University)

Recall that the Zariski topology on **Spec** *R* is given by closed basis $\{\mathbf{V}(a)\}_{a \in R}$ where

$$\mathbf{V}(a) := \{ \mathfrak{p} \in \operatorname{\mathbf{Spec}} R \mid a \in \mathfrak{p} \}.$$

Definition

The topology of $\mathbf{Spec}_{\otimes}(\mathcal{T})$ is given by closed basis $\{\mathbf{Supp}_{\otimes}(\mathcal{T})\}_{M\in\mathcal{T}}$ where

$$\mathbf{Supp}_{\otimes}(\mathcal{T}) := \{ \mathcal{P} \in \mathbf{Spec}_{\otimes}(\mathcal{T}) \mid M \notin \mathcal{P} \}.$$

This topological space $\mathbf{Spec}_{\otimes}(\mathcal{T})$ is called the tensor-triangular spectrum (tt-spectrum) of \mathcal{T} .

 Kock-Pitsch (2017) This topology is the Hochster dual of the Zariski topology

 $(\mathcal{T},\otimes,1){:}$ tensor triangulated category

Classification theorem (Balmer(2005)) ∃ a bijection

Thomason subset = union of complements of quasi-compact open subsets

- = subsets of the form $\textbf{Supp}_{\otimes}(\mathcal{I})$ for $\mathcal{I} \in \textbf{Rad}_{\otimes}(\mathcal{T})$
- = specialization-closed subset if noeth. top. space

This theorem unifies several known results, e.g.,

- Hopkins (1987), Neeman (1992), Thomason (1997): Classification of radical ideals of D^{pf}(X) via Spcl(X).
- Benson-Carlson-Rickard (1997), Benson-Iyengar-Krause (2011): Classification of radical ideals of stmod kG via Spcl(Proj H*(G; k)).

Uniqueness theorem (Balmer)

If \exists a noetherian topological space X that classifies radical ideals of ${\cal T}$ i.e., \exists a bijection

 $\operatorname{\mathsf{Rad}}_{\otimes}(\mathcal{T}) \Longrightarrow \operatorname{\mathsf{Spcl}}(X),$

then $\operatorname{Spec}_{\otimes}(\mathcal{T}) \cong X$.

Theorem (Balmer)

For a noetherian scheme X,

 $\mathbf{Spec}_{\otimes}(\mathsf{D^{pf}}(X))\cong X$

2 For a field k and a finite group G,

 $\operatorname{Spec}_{\otimes}(\operatorname{stmod} kG) \cong \operatorname{Proj} \operatorname{H}^*(G; k)$

X (resp. Proj H*(G; k)) is reconstructed from D^{pf}(X) (resp. stmod kG) using tensor structure.

 $(\mathcal{T},\otimes,1){:}$ tensor triangulated category

Observation

$\mathcal{P} \in \mathbf{Rad}_{\otimes}(\mathcal{T})$ is prime ideal iff $\exists !$ a radical ideal \mathcal{I} with $\mathcal{P} \subsetneq \mathcal{I}$ s.t. $\not\exists$ radical ideals \mathcal{J} with $\mathcal{P} \subsetneq \mathcal{J} \subsetneq \mathcal{I}$. In other words, \mathcal{P} is prime iff it has a unique cover in the lattice $\mathbf{Rad}_{\otimes}(\mathcal{T})$.

"if part": Assume such *I* exists. If *P* is not prime, then *P* ⊆ *Q* for each prime ideal *Q* that contains *P*. Therefore

$$\mathcal{P} \subsetneq \mathcal{I} \subseteq \bigcap_{\mathcal{P} \subseteq \mathcal{Q} \in \mathbf{Spec}_{\otimes}(\mathcal{T})} \mathcal{Q} = \sqrt{\mathcal{P}} = \mathcal{P}.$$

"only if part": Use Balmer's classification and need some argument on topological space $\mathbf{Spec}_{\otimes}(\mathcal{T})$. \Box

- Prime ideals of \mathcal{T} is determined by the lattice structure on $\mathbf{Rad}_{\otimes}(\mathcal{T})$.
- Our strategy is to replace $Rad_{\otimes}(\mathcal{T})$ with the lattice $Th(\mathcal{T})$ of thick subcategories.

 $\mathcal{T}:$ triangulated category

Definition $\mathcal{P} \in \mathbf{Th}(\mathcal{T})$ is a prime thick subcategory if \mathcal{P} has a unique cover in $\mathbf{Th}(\mathcal{T})$. $\mathbf{Spec}_{\triangle}(\mathcal{T}) := \{\text{prime thick subategories of } \mathcal{T}\}$

• We will see later that for a radical ideal \mathcal{P} of $D^{pf}(X)$,

 $\mathcal{P}: \mbox{ prime ideal } \Longleftrightarrow \mathcal{P}: \mbox{ prime thick subcategory }$

• We can consider that prime thick subcategories are "tensor-free" analog of prime ideals.

Example

Let R be a commutative noetherian ring. Then

$$\mathcal{S}^{\mathsf{pf}}(\mathfrak{p}) := \{ M \in \mathsf{D}^{\mathsf{pf}}(R) \mid M_\mathfrak{p} \cong 0 \text{ in } \mathsf{D}^{\mathsf{pf}}(R_\mathfrak{p}) \}$$

is a prime thick subcategory of $D^{pf}(R)$ for any $\mathfrak{p} \in \operatorname{\mathbf{Spec}} R$.

(:.) Use the lattice isomorphism

$$\mathsf{Th}(\mathsf{D}^{\mathsf{pf}}(R))\cong\mathsf{Spcl}(\operatorname{Spec} R),\quad \mathcal{X}\mapsto\mathsf{Supp}(\mathcal{X}):=igcup_{M\in\mathcal{X}}\mathsf{Supp}(M)$$

by Hopkins-Neeman. By this correspondence, $S^{pf}(\mathfrak{p})$ corresponds to $W_0 = \{\mathfrak{q} \in \operatorname{Spec} R \mid \mathfrak{p} \notin \overline{\{\mathfrak{q}\}}\}$. Since $W_0 \cup \{\mathfrak{p}\}$ is a unique cover W_0 , $S^{pf}(\mathfrak{p})$ has a unique cover by the above correspondence.

Example

Let R be a hypersurface local ring (i.e., $R \cong S/(x)$ for some RLR S). Then

$$S^{sg}(\mathfrak{p}) := \{ M \in \mathsf{D}^{sg}(R) \mid M_\mathfrak{p} \cong 0 \text{ in } \mathsf{D}^{sg}(R_\mathfrak{p}) \}$$

is a prime thick subcategory of $D^{sg}(R)$ for any $\mathfrak{p} \in \mathbf{Sing } R$.

 (\because) Here, use the lattice isomorphism

$$\mathbf{Th}(\mathsf{D}^{\mathsf{sg}}(R)) \cong \mathbf{Spcl}(\mathbf{Sing}\,R)$$

by Takahashi (2010). Then we do the same argument as above: $S^{sg}(\mathfrak{p})$ corresponds to $W_0 = \{\mathfrak{q} \in \operatorname{Sing} R \mid \mathfrak{p} \notin \overline{\{\mathfrak{q}\}}\}.$

Example

Let (R, \mathfrak{m}) be a complete intersection local ring (i.e., $R \cong S/(\underline{x})$ for some RLR S and a regular sequence \underline{x}). Then

$$\mathcal{S}^{\mathsf{b}}(\mathfrak{m}) := \{ M \in \mathsf{D}^{\mathsf{b}}(R) \mid M_{\mathfrak{m}} \cong \mathsf{0} \text{ in } \mathsf{D}^{\mathsf{b}}(R) \} = \mathbf{0}$$

is a prime thick subcategory of $D^{b}(R)$.

(::) It follows from Dwyer-Greenlees-Iyengar (2006) and Hopkins-Neeman, non-zero thick subcategory contains

$$\mathcal{X} := \{ M \in \mathsf{D}^{\mathsf{pf}}(R) \mid \mathsf{Supp}(M) \subseteq \{\mathfrak{m}\} \}.$$

Therefore, \mathcal{X} is a unique cover of **0**.

Definition

Define a topology on $\mathbf{Spec}_{\triangle}(\mathcal{T})$ by closed basis $\{\mathbf{Supp}_{\triangle}(M)\}_{M\in\mathcal{T}}$ where

$$\operatorname{\mathsf{Supp}}_{\bigtriangleup}(M) := \{\mathcal{P} \in \operatorname{\mathsf{Spec}}_{\bigtriangleup}(\mathcal{T}) \mid M \notin \mathcal{P}\}.$$

We call $\mathbf{Spec}_{\triangle}(\mathcal{T})$ the triangular spectrum of \mathcal{T} .

Definition

A thick subcategory $\mathcal{X} \in \mathsf{Th}(\mathcal{T})$ is radical if

$$\mathcal{X} = \sqrt{\mathcal{X}} := \bigcap_{\mathcal{X} \subseteq \mathcal{P} \in \mathbf{Spec}_{\bigtriangleup}(\mathcal{T})} \mathcal{P}.$$

 $\operatorname{Rad}_{\bigtriangleup}(\mathcal{T}) := \{ \text{radical thick subcategories of } \mathcal{T} \}$

Theorem A

I ∃ a bijection

$$\operatorname{\mathsf{Rad}}_{\bigtriangleup}(\mathcal{T}) \xrightarrow[\operatorname{\mathsf{Supp}}_{\bigtriangleup}]{\overset{\operatorname{\mathsf{Supp}}_{\bigtriangleup}}{\underset{\operatorname{\mathsf{Supp}}_{\bigtriangleup}^{-1}}{\overset{\operatorname{\mathsf{Supp}}_{\bigtriangleup}}{\overset{\operatorname{\mathsf{Napp}}_{\bigtriangleup}}}}} \{\operatorname{\mathsf{Supp}}_{\bigtriangleup}(\mathcal{X}) \mid \mathcal{X} \in \operatorname{\mathsf{Rad}}_{\bigtriangleup}(\mathcal{T})\}$$

If ∃ a noetherian top. sp. X that classifies thick subcategories of T i.e., ∃ a bijection

$$\mathsf{Th}(\mathcal{T}) \Longrightarrow \mathsf{Spcl}(X),$$

then $\operatorname{Spec}_{\bigtriangleup}(\mathcal{T}) \cong X$.

problem

- Supp_△(X) may not be a Thomason subset. Can we give a topological characterization of RHS in (1)?
- If (2), can we replace $\mathbf{Th}(\mathcal{T})$ with $\mathbf{Rad}_{\triangle}(\mathcal{T})$?

Corollary

- Let X be a quasi-affine noetherian scheme (i.e., \mathcal{O}_X is ample). Then $\mathbf{Spec}_{\wedge}(\mathsf{D}^{\mathsf{pf}}(X)) \cong X$
- Since $(DS_{X,x}) \approx C_{X,x}$ is hypersurface for $\forall x \in X$. Then

 $\operatorname{\mathsf{Spec}}_{\bigtriangleup}(\operatorname{\mathsf{D}^{\mathrm{sg}}}(X))\cong\operatorname{\mathsf{Sing}}(X)$

- Let k be a field and G a finite p-group. Then **Spec** $(\mathsf{stmod} kG) \cong \mathsf{Proj} \mathsf{H}^*(G; k)$
 - Reconstruction without tensor structure.
 - By (1), dim X is an invariant of triangulated category $D^{pf}(X)$.
 - By (2), the *p*-rank

 $r_{p}(G) = \inf\{n \geq 0 \mid (\mathbb{Z}/pZZ)^{\oplus n} \subseteq G\} \stackrel{Quillen}{=} \dim \operatorname{Proj} H^{*}(G; k)$ is an invariant of triangulated category stmod kG.

Example

Let \mathbb{P}^1 be a projective line over a field k. Then it was shown by Krause-Stevenson (2019) that there is a lattice isomorphism

 $\mathsf{Th}(\mathsf{D}^{\mathsf{pf}}(\mathbb{P}^1)) \cong \mathsf{Spcl}(\mathbb{P}^1) \sqcup \mathbb{Z}.$

Restricting this to prime thick subcategories, we get a homeomorphism

$$\begin{split} \mathbf{Spec}_{ riangle}(\mathsf{D}^{\mathsf{pf}}(\mathbb{P}^1)) &= \mathbf{Spec}_{\otimes}(\mathsf{D}^{\mathsf{pf}}(\mathbb{P}^1)) \sqcup \{\mathsf{thick}(\mathcal{O}_{\mathbb{P}^1}(i)) \mid i \in \mathbb{Z}\} \ &\cong \mathbb{P}^1 \sqcup \mathbb{Z} \end{split}$$

Without classification, it is quite difficult to determine tensor (triangular) spectra in general.

 \rightarrow We will determine a certain subset of triangular spectrum

X: noetherian scheme

Observation

By Balmer's theorem $\mathbf{Spec}_{\otimes}(\mathsf{D}^{\mathrm{pf}}(X))\cong X$, every prime ideal of $\mathsf{D}^{\mathrm{pf}}(X)$ is of the form

$$\mathcal{S}^{\mathrm{pf}}(x) := \{ M \in \mathsf{D}^{\mathrm{pf}}(X) \mid M_x \cong 0 \text{ in } \mathsf{D}^{\mathrm{pf}}(\mathcal{O}_{X,x}) \}$$

for some $x \in X$.

Question

For $* \in {pf, b, sg}$ and $x \in X$, is

 $\mathcal{S}^*(x) := \{ M \in \mathsf{D}^*(X) \mid M_x \cong 0 \text{ in } \mathsf{D}^*(\mathcal{O}_{X,x}) \}$

a prime thick subcategory?

Recall (Examples)

Let R be a commutative noetherian ring.

• For any $\mathfrak{p} \in \operatorname{Spec} R$,

$$\mathcal{S}^{\mathsf{pf}}(\mathfrak{p}) = \{ M \in \mathsf{D}^{\mathsf{pf}}(R) \mid M_\mathfrak{p} \cong \mathsf{0} \text{ in } \mathsf{D}^{\mathsf{pf}}(R_\mathfrak{p}) \}$$

is a prime thick subcategory.

2 If (R, \mathfrak{m}) is a complete intersection local ring, then

 $\mathcal{S}^{\mathsf{b}}(\mathfrak{m}) = \mathbf{0}$

is a prime thick subcategory.

③ If (R, \mathfrak{m}) is a hypersurface local ring, then

 $\mathcal{S}^{sg}(\mathfrak{p}) = \{ M \in \mathsf{D}^{sg}(R) \mid M_\mathfrak{p} \cong 0 \text{ in } \mathsf{D}^{sg}(R_\mathfrak{p}) \}$

is a prime thick subcategory for each $\mathfrak{p} \in \mathbf{Sing } R$.

Theorem B

Let X be a separated noetherian scheme.

- For any $x \in X$, $S^{pf}(x)$ is a prime thick subcategory of $D^{pf}(X)$.
- For any x ∈ X, S^b(x) is a prime thick subcategory of D^b(X) iff O_{X,x}
 is complete intersection.
- For any x ∈ Sing(X), if O_{X,x} is hypersurface, then S^{sg}(x) is a prime thick subcategory. The converse holds if O_{X,x} is complete intersection.
 - The converse of (3) does not holds in general without complete intersection assumption.
 - (3) is a paraphrase of Takahashi (2021) for a Zariski spectrum of a noetherian local ring (R, m) and x = m.
 - This theorem gives a categorical characterization of hypersurface points and complete intersection points.

Corollary

For a radical ideal $\mathcal{P} \subseteq \mathsf{D}^{\mathsf{pf}}(X)$,

$$\mathcal{P}\in \mathbf{Spec}_{\otimes}(\mathsf{D}^{\mathsf{pf}}(X)) \Longleftrightarrow \mathcal{P}\in \mathbf{Spec}_{\bigtriangleup}(\mathsf{D}^{\mathsf{pf}}(X))$$

 \Leftarrow holds for a general tensor triangulated category.

Corollary

There are immersion of topological spaces:

$$X \hookrightarrow \mathbf{Spec}_{\triangle}(\mathsf{D}^{\mathsf{pf}}(X))$$

Output CI(X) → Spec_△(D^b(X)),
where CI(X) := {x ∈ X |
$$O_{X,x}$$
: complete intersection}.

●
$$HS(X) \hookrightarrow Spec_{\triangle}(D^{sg}(X))$$
,
where $HS(X) := \{x \in X \mid \mathcal{O}_{X,x} : \text{ singular hypersurface}\}$.

Restrict the RHS of (1) to radical ideals $\Rightarrow X \cong \mathbf{Spec}_{\triangle}(\mathsf{D}^{\mathsf{pf}}(X) \cap \mathbf{Rad}_{\otimes}(\mathsf{D}^{\mathsf{pf}}(X)) = \mathbf{Spec}_{\otimes}(\mathsf{D}^{\mathsf{pf}}(X))$

Hiroki Matsui (Tokushima University)

Sketch of the proof of Theorem B

(1) Reduce to affine case $X = \operatorname{Spec} R$, $x = \mathfrak{p}$:

Proposition

For an affine open $U \subseteq X$ with $Z := X \setminus U$

 $\mathsf{D}^*(X)/\mathsf{D}^*_Z(X)\cong\mathsf{D}^*(U)$

Here, $\mathsf{D}^*_Z(X) = \bigcap_{x \in U} \mathcal{S}^*(x)$.

- * = pf: Thomason-Trobaugh (1990), Balmer(2002)
- * = b : Keller (1999), Schlichiting (2008)
- * = sg: Orlov (2004, 2011), Chen (2010) (Under (ELF) condition)

For * = sg, we can remove (ELF) assumption using Krause's stable derived category S(X).

• S(X) is compactly generated triang. cat. such that $S(X)^c \cong D^{sg}(X)$.

•
$$S(X)/S_Z(X) \cong S(U)$$

Sketch of the proof of Theorem B

(2) Reduce to local case
$$(R, \mathfrak{m})$$
, $x = \mathfrak{m}$, and $\mathcal{S}^*(\mathfrak{m}) = \mathbf{0}$:

Proposition

For a commutative noetherian ring R and $\mathfrak{p} \in \operatorname{\mathbf{Spec}} R$

 $\mathsf{D}^*(R)/\mathcal{S}^*(\mathfrak{p})\cong\mathsf{D}^*(R_\mathfrak{p})$

- Hom commutes with localization $\Rightarrow D^*(R)/S^*(p) \rightarrow D^*(R_p)$ is fully faithful.
- Check essentially surjective directly.
- (3) Check whether $\mathbf{0}$ is prime or not. We use:
 - * = pf: Hopkins-Neeman (1992)
 - * = b : Dwyer-Greenlees-Iyengar (2006), Pollitz (2019)
 - * = sg: Takahashi (2021)

Further problem

For a noetherian scheme X its Fourier-Mukai partner is a noetherian scheme Y such that $D^{pf}(X) \cong D^{pf}(Y)$ as tringlated categories.

$$\implies Y \subseteq \operatorname{\mathbf{Spec}}_{\otimes}(\operatorname{\mathsf{D}^{pf}}(Y)) \cong \operatorname{\mathbf{Spec}}_{\otimes}(\operatorname{\mathsf{D}^{pf}}(X))$$

Question

For a noetherian scheme X, when does the inclusion

$$\bigcup \{Y \mid Y \text{ is a FM partner of } X\} \subseteq \mathbf{Spec}_{\otimes}(\mathsf{D}^{\mathsf{pf}}(X))$$

become equality?

Thank you for your kind attention!