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I.1 - Cluster tilting

C a K-linear, Hom-finite, Krull–Schmidt, 2-Calabi–Yau
triangulated category.

Definition

T ∈ C is a cluster tilting object if:

C (X ,ΣT ) = 0⇔ X ∈ add T .

Theorem (Buan–Marsh–Reineke–Reiten–Todorov, Iyama–Yoshino)

Let T = T ⊕ X ∈ C be a basic cluster tilting object, with X
indecomposable.Then, there is a unique (up to iso) indecomposable
Y ∈ C , not isomorphic to X , such that T ⊕ Y is cluster tilting.
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I.2 - Two-term silting

Λ a finite-dimensional basic K-algebra.
X ∈ Kb(proj Λ) is two-term if of the form

X = · · · → 0→ X−1 → X 0 → 0→ · · ·

Definition

S ∈ Kb(proj Λ) is silting if

Ext>0(S ,S) = 0 and

thick(S) = Kb(proj Λ).

Theorem (Aihara–Iyama, Kimura)

Let S = S ⊕ X be basic two-term silting in Kb(proj Λ), with X
indecomposable. Then there is a unique (up to iso)
indecomposable Y not isomorphic to X such that S ⊕ Y is
two-term silting.
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I.3 - Intermediate co-t-structures

T a triangulated category.

Definition (Pauksztello, Bondarko)

A co-t-structure on T is a pair (A ,B) of full subcategories closed
under summands s. th.

A ⊥ B: ∀A ∈ A ,∀B ∈ B,T (A,B) = 0,

T = A ∗B: ∀X ∈ T , ∃ A→ X → B → ΣA,

A ⊆ ΣA (equiv. ΣB ⊆ B).

Definition

Given a fixed co-t-structure (A ,B) on T , a co-t-structure
(A ′,B′) is intermediate if A ⊆ A ′ ⊆ ΣA (equiv.
ΣB ⊆ B′ ⊆ B).

Yann Palu Mutation in hereditary extriangulated categories.
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Given a fixed co-t-structure (A ,B) on T , a co-t-structure
(A ′,B′) is intermediate if A ⊆ A ′ ⊆ ΣA (equiv.
ΣB ⊆ B′ ⊆ B).

Theorem (Koenig–Yang, Brüstle–Yang)

Fix a co-t-structure (A ,B). Then, there is a mutation theory for
intermediate co-t-structures (A ′,B′), where the mutation changes
precisely one indecomposable isoclass in (ΣA ′) ∩B′.
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A grid

A kiss A (shy) kiss No kissings
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A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

ω

ω

ω′

ω′

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A reduced non-kissing facet

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss

A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss

A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss

No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

A kiss A (shy) kiss No kissings

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

I.4 - Non-kissing facets

Definition

A non-kissing facet is a maximal set of pairwise non-kissing walks.

Theorem (McConville)

Let G be a grid. Then

1 All non-kissing facets have same cardinality.

2 Flip : For each facet F and each bending walk ω ∈ F , there is
a unique walk ω′ 6= ω such that (F \ {ω}) ∪ {ω′} is a facet.

Yann Palu Mutation in hereditary extriangulated categories.
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II.1 - g -vectors and cluster categories

As in I.1, C Krull–Schmidt, 2-Calabi–Yau, triangulated category
with a basic cluster tilting object T = T1 ⊕ · · · ⊕ Tn.

Proposition (Buan–Marsh–Reiten, Keller–Reiten)

For all X ∈ C , there is a triangle ⊕T bi
i → ⊕T ai

i → X → ΣT b.

Definition (Dehy–Keller, P.)

indT X = (ai − bi ) ∈ Ksplit
0 (addT ).

Remark (P.)

Given a triangle X → Y → Z
ε−→ ΣX , we have

indT Y = indT X + indT Z ⇔ ε ∈ (ΣT ).

Yann Palu Mutation in hereditary extriangulated categories.
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II.1 - g -vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying g -vectors, endow C with the subclass ∆T of

triangles of the form X → Y → Z
(ΣT )−−−→ ΣX .

By a result of
[Herschend–Liu–Nakaoka], (C ,∆T ) is “extriangulated”.
Moreover, we have :

T projective in (C ,∆T )
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We have:
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1−→ ΣT ∈ ∆T .
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II.2 - 0-Auslander extriangulated categories

C extriangulated category For example:

C abelian or exact category,

C triangulated category,

(C ,∆T ) as in II.1,

C extension-closed full subcategory of a triangulated category.

⇒ extriangles X � Y � Z 99K
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II.2 - 0-Auslander extriangulated categories

C extriangulated category

Definition

C is 0-Auslander if

1 C has enough projectives and injectives,

2 C is hereditary: ∀X ∈C ∃P1 � P0 � X 99K with P0,P1

projective,

3 ∀P projective ∃P � Q � I 99K with I injective and Q
projective-injective.

C is reduced 0-Auslander if 0 is the only projective-injective.

Yann Palu Mutation in hereditary extriangulated categories.
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II.2 - 0-Auslander extriangulated categories

Examples

The following are examples of reduced 0-Auslander extriangulated
categories:

(C ,∆T ) where T cluster tilting.

K[−1,0](proj Λ) ⊆ Kb(proj Λ) two-term complexes.

Extended cohearts of co-t-structures.

(A ,B) co-t-structure on a triangulated category T .
coheart : S = (ΣA ) ∩B
extended coheart : C = S ∗ ΣS = (Σ2A ) ∩B

Yann Palu Mutation in hereditary extriangulated categories.
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I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.

C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.
C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P.

Definition

A rigid (Ext1(R,R) = 0) object R ∈ C is

(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K with
R0,R1 ∈ add R.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K with
R0,R1 ∈ add R.

(iv) complete rigid if: |R| = |P|.

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.1 - Tilting objects

Definition
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(i) maximal rigid if: R ⊕ X rigid ⇒ X ∈ add R,

(ii) tilting if: ∀P projective ∃P � R0 � R1 99K.

(iii) cotilting if: ∀I injective ∃R0 � R1 � I 99K.

(iv) complete rigid if: |R| = |P|.

Theorem

C reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt
with a projective generator P. Then

R rigid ⇒ |R| ≤ |P|.
Conditions (i) to (iv) are equivalent.
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III.2 - Mutation

Theorem

C reduced 0-Auslander extriangulated, Krull–Schmidt with a basic
tilting object R = R ⊕ X where X indecomposable.

Then, there is
a unique, up to isomorphism, indecomposable Y not isomorphic to
X such that R ⊕ Y is tilting. Moreover, there is precisely one
“exchange extriangle”

X � E � Y 99K or Y � E ′ � X 99K

with E or E ′ in add R.

Yann Palu Mutation in hereditary extriangulated categories.
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X � E � Y 99K or Y � E ′ � X 99K

with E or E ′ in add R.
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with E or E ′ in add R.

Corollary

Applied to (C ,∆T ), recovers cluster tilting mutation.
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C reduced 0-Auslander extriangulated, Krull–Schmidt with a basic
tilting object R = R ⊕ X where X indecomposable. Then, there is
a unique, up to isomorphism, indecomposable Y not isomorphic to
X such that R ⊕ Y is tilting. Moreover, there is precisely one
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with E or E ′ in add R.

Corollary

Applied to K[−1,0](proj Λ), recovers 2-term silting mutation.
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Theorem

C reduced 0-Auslander extriangulated, Krull–Schmidt with a basic
tilting object R = R ⊕ X where X indecomposable. Then, there is
a unique, up to isomorphism, indecomposable Y not isomorphic to
X such that R ⊕ Y is tilting. Moreover, there is precisely one
“exchange extriangle”

X � E � Y 99K or Y � E ′ � X 99K

with E or E ′ in add R.

Corollary

Applied to extended cohearts and combined with a theorem by
Adachi–Tsukamoto, recovers mutation of intermediate
co-t-structures.
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Let (Q, I ) be the (gentle) blossming bound quiver associated with
a grid.

Definition

The category of walks W is the full, additive subcategory of
modKQ/I whose indecomposable objects are the indecomposable
representations associated with walks in the grid.

For a walk ω, write Mω for the associated indecomposable
representation.
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Let (Q, I ) be the blossming bound quiver associated with a grid.

Theorem

Let W be the category of walks associated with (Q, I ).

We have:

W is extension-closed in modKQ/I , hence exact.

Mω is projective-injective in W if and only if ω is a straight
walk.

Mω is projective but not injective in W if and only if ω turns
precisely once, from top to right.

Mω is injective but not projective in W if and only if ω turns
precisely once, from left to bot.

W is 0-Auslander.

A walk ω kisses a walk γ if and only if Ext1
W (Mγ ,Mω) 6= 0.
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Corollary

Non-kissing facets correspond to tilting objects in W .

Their flips correspond to mutation in W .

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.



I - Four examples of mutations
II - Hereditary extriangulated categories

III - One mutation to rule them all

III.3 - Flips are mutations

Thank you for your attention!
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