Mutation in hereditary extriangulated categories.

Yann Palu

Université de Picardie Jules Verne

October 14th 2021 - FD Seminar

.

Introduction

• Cluster algebras

(日)

Introduction

• Cluster algebras: mutation

(日)

Introduction

- Cluster algebras: mutation
- Cluster tilting

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction

- Cluster algebras: mutation
- Cluster tilting
- Two-term silting

→ < Ξ → <</p>

-

Introduction

- Cluster algebras: mutation
- Cluster tilting
- Two-term silting
- Relative tilting...

3.5

Introduction

- Cluster algebras: mutation
- Cluster tilting
- Two-term silting
- Relative tilting...

Aim

Those mutations arise because of the presence of some "nice" extriangulated structures.

• • = • • = •

I.1 - Cluster tilting

 ${\mathscr C}$ a ${\mathbb K}\mbox{-linear},$ Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated category.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

I.1 - Cluster tilting

 \mathscr{C} a K-linear, Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated category. $\mathscr{C}(X, \Sigma Y) \cong D\mathscr{C}(Y, \Sigma X)$

I.1 - Cluster tilting

 ${\mathscr C}$ a ${\mathbb K}\mbox{-linear},$ Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated category.

Definition

 $T \in \mathscr{C}$ is a *cluster tilting* object if:

$$\mathscr{C}(X, \Sigma T) = 0 \Leftrightarrow X \in \mathsf{add} T.$$

イロト イポト イラト イラト

I.1 - Cluster tilting

 ${\mathscr C}$ a ${\mathbb K}\mbox{-linear},$ Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated category.

Definition

 $T \in \mathscr{C}$ is a *cluster tilting* object if:

$$\mathscr{C}(X, \Sigma T) = 0 \Leftrightarrow X \in \mathsf{add} T.$$

Theorem (Buan-Marsh-Reineke-Reiten-Todorov, Iyama-Yoshino)

Let $T = \overline{T} \oplus X \in \mathscr{C}$ be a basic cluster tilting object, with X indecomposable.

イロト イポト イラト イラト

I.1 - Cluster tilting

 ${\mathscr C}$ a ${\mathbb K}\mbox{-linear},$ Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated category.

Definition

 $T \in \mathscr{C}$ is a *cluster tilting* object if:

$$\mathscr{C}(X, \Sigma T) = 0 \Leftrightarrow X \in \mathsf{add} T.$$

Theorem (Buan–Marsh–Reineke–Reiten–Todorov, Iyama–Yoshino)

Let $T = \overline{T} \oplus X \in \mathscr{C}$ be a basic cluster tilting object, with X indecomposable. Then, there is a unique (up to iso) indecomposable $Y \in \mathscr{C}$, not isomorphic to X, such that $\overline{T} \oplus Y$ is cluster tilting.

イロト イポト イラト イラト

I.2 - Two-term silting

 Λ a finite-dimensional basic \mathbb{K} -algebra. $X \in \mathcal{K}^{b}(\operatorname{proj} \Lambda)$ is two-term if of the form

$$X=\cdots
ightarrow 0
ightarrow X^{-1}
ightarrow X^{0}
ightarrow 0
ightarrow \cdots$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

I.2 - Two-term silting

 Λ a finite-dimensional basic \mathbb{K} -algebra. $X \in \mathcal{K}^{b}(\operatorname{proj} \Lambda)$ is two-term if of the form

$$X = \cdots
ightarrow 0
ightarrow X^{-1}
ightarrow X^0
ightarrow 0
ightarrow \cdots$$

Definition

- $S \in \mathcal{K}^{\mathsf{b}}(\mathsf{proj}\,\Lambda)$ is silting if
 - $Ext^{>0}(S, S) = 0$ and
 - thick(S) = $\mathcal{K}^{b}(\operatorname{proj} \Lambda)$.

• • = • • = •

I.2 - Two-term silting

Λ a finite-dimensional basic \mathbb{K} -algebra. X ∈ $\mathcal{K}^{b}(\text{proj } Λ)$ is two-term if of the form

$$X = \cdots
ightarrow 0
ightarrow X^{-1}
ightarrow X^0
ightarrow 0
ightarrow \cdots$$

Definition

- $S \in \mathcal{K}^{\mathsf{b}}(\mathsf{proj}\,\Lambda)$ is silting if
 - $Ext^{>0}(S, S) = 0$ and
 - thick(S) = $\mathcal{K}^{b}(\operatorname{proj} \Lambda)$.

Theorem (Aihara–Iyama, Kimura)

Let $S = \overline{S} \oplus X$ be basic two-term silting in $\mathcal{K}^{b}(\text{proj }\Lambda)$, with X indecomposable.

I.2 - Two-term silting

Λ a finite-dimensional basic \mathbb{K} -algebra. X ∈ $\mathcal{K}^{b}(\text{proj } Λ)$ is two-term if of the form

$$X = \cdots \rightarrow 0 \rightarrow X^{-1} \rightarrow X^0 \rightarrow 0 \rightarrow \cdots$$

Definition

- $S \in \mathcal{K}^{\mathsf{b}}(\mathsf{proj}\,\Lambda)$ is silting if
 - $Ext^{>0}(S, S) = 0$ and
 - thick(S) = $\mathcal{K}^{b}(\operatorname{proj} \Lambda)$.

Theorem (Aihara–Iyama, Kimura)

Let $S = \overline{S} \oplus X$ be basic two-term silting in $\mathcal{K}^{b}(\text{proj }\Lambda)$, with X indecomposable. Then there is a unique (up to iso) indecomposable Y not isomorphic to X such that $\overline{S} \oplus Y$ is two-term silting.

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathcal{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathcal{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

• $\mathscr{A} \perp \mathscr{B}$:

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathscr{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

• $\mathscr{A} \perp \mathscr{B}: \forall A \in \mathscr{A}, \forall B \in \mathscr{B}, \mathscr{T}(A, B) = 0$,

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathscr{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

- $\mathscr{A} \perp \mathscr{B}: \forall A \in \mathscr{A}, \forall B \in \mathscr{B}, \mathscr{T}(A, B) = 0$,
- $\mathcal{T} = \mathscr{A} * \mathscr{B}$:

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathscr{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

- $\mathscr{A} \perp \mathscr{B}: \forall A \in \mathscr{A}, \forall B \in \mathscr{B}, \mathscr{T}(A, B) = 0$,
- $\mathscr{T} = \mathscr{A} * \mathscr{B}: \forall X \in \mathscr{T}, \exists A \to X \to B \to \Sigma A$,

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathscr{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

- $\mathscr{A} \perp \mathscr{B}: \forall A \in \mathscr{A}, \forall B \in \mathscr{B}, \mathscr{T}(A, B) = 0,$
- $\mathscr{T} = \mathscr{A} * \mathscr{B}: \forall X \in \mathscr{T}, \exists A \to X \to B \to \Sigma A,$
- $\mathscr{A} \subseteq \Sigma \mathscr{A}$ (equiv. $\Sigma \mathscr{B} \subseteq \mathscr{B}$).

1.3 - Intermediate co-*t*-structures

 ${\mathscr T}$ a triangulated category.

Definition (Pauksztello, Bondarko)

A co-*t*-structure on \mathscr{T} is a pair $(\mathscr{A}, \mathscr{B})$ of full subcategories closed under summands s. th.

- $\mathscr{A} \perp \mathscr{B}: \forall A \in \mathscr{A}, \forall B \in \mathscr{B}, \mathscr{T}(A, B) = 0,$
- $\mathscr{T} = \mathscr{A} * \mathscr{B}: \forall X \in \mathscr{T}, \exists A \to X \to B \to \Sigma A,$
- $\mathscr{A} \subseteq \Sigma \mathscr{A}$ (equiv. $\Sigma \mathscr{B} \subseteq \mathscr{B}$).

Definition

Given a fixed co-*t*-structure $(\mathscr{A}, \mathscr{B})$ on \mathscr{T} , a co-*t*-structure $(\mathscr{A}', \mathscr{B}')$ is intermediate if $\mathscr{A} \subseteq \mathscr{A}' \subseteq \Sigma \mathscr{A}$ (equiv. $\Sigma \mathscr{B} \subseteq \mathscr{B}' \subseteq \mathscr{B}$).

イロト イボト イヨト イヨト

1.3 - Intermediate co-t-structures

Definition

Given a fixed co-*t*-structure $(\mathscr{A}, \mathscr{B})$ on \mathscr{T} , a co-*t*-structure $(\mathscr{A}', \mathscr{B}')$ is intermediate if $\mathscr{A} \subseteq \mathscr{A}' \subseteq \Sigma \mathscr{A}$ (equiv. $\Sigma \mathscr{B} \subseteq \mathscr{B}' \subseteq \mathscr{B}$).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1.3 - Intermediate co-*t*-structures

Definition

Given a fixed co-*t*-structure $(\mathscr{A}, \mathscr{B})$ on \mathscr{T} , a co-*t*-structure $(\mathscr{A}', \mathscr{B}')$ is intermediate if $\mathscr{A} \subseteq \mathscr{A}' \subseteq \Sigma \mathscr{A}$ (equiv. $\Sigma \mathscr{B} \subseteq \mathscr{B}' \subseteq \mathscr{B}$).

Theorem (Koenig–Yang, Brüstle–Yang)

Fix a co-t-structure $(\mathscr{A}, \mathscr{B})$. Then, there is a mutation theory for intermediate co-t-structures $(\mathscr{A}', \mathscr{B}')$, where the mutation changes precisely one indecomposable isoclass in $(\Sigma \mathscr{A}') \cap \mathscr{B}'$.

< ロ > < 同 > < 三 > < 三 >

I.4 - Non-kissing facets

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

æ

I.4 - Non-kissing facets

(日)

I.4 - Non-kissing facets

(日)

I.4 - Non-kissing facets

A walk

Yann Palu Mutation in hereditary extriangulated categories.

(日)

I.4 - Non-kissing facets

Not a walk

Yann Palu Mutation in hereditary extriangulated categories.

I.4 - Non-kissing facets

I.4 - Non-kissing facets

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

Straight walks

Yann Palu Mutation in hereditary extriangulated categories.

э

I.4 - Non-kissing facets

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

æ

I - Four examples of mutations

II - Hereditary extriangulated categories
 III - One mutation to rule them all

I.4 - Non-kissing facets

э
I.4 - Non-kissing facets

A reduced non-kissing facet

(日)

I.4 - Non-kissing facets

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

æ

I.4 - Non-kissing facets

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

æ

I.4 - Non-kissing facets

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

A kiss

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

A kiss

イロト イボト イヨト イヨト

I.4 - Non-kissing facets

I.4 - Non-kissing facets

I.4 - Non-kissing facets

Definition

A non-kissing facet is a maximal set of pairwise non-kissing walks.

I.4 - Non-kissing facets

Definition

A non-kissing facet is a maximal set of pairwise non-kissing walks.

Theorem (McConville)

Let G be a grid. Then

All non-kissing facets have same cardinality.

I.4 - Non-kissing facets

Definition

A non-kissing facet is a maximal set of pairwise non-kissing walks.

Theorem (McConville)

Let G be a grid. Then

- All non-kissing facets have same cardinality.
- 2 Flip

I.4 - Non-kissing facets

Definition

A non-kissing facet is a maximal set of pairwise non-kissing walks.

Theorem (McConville)

Let G be a grid. Then

- In All non-kissing facets have same cardinality.
- **2** Flip : For each facet F and each bending walk $\omega \in F$, there is a unique walk $\omega' \neq \omega$ such that $(F \setminus \{\omega\}) \cup \{\omega'\}$ is a facet.

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

(日)

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

(日)

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

(日)

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

I.4 - Non-kissing facets: Example of a flip

Yann Palu Mutation in hereditary extriangulated categories.

(日)

II.1 - g-vectors and cluster categories

As in I.1, \mathscr{C} Krull–Schmidt, 2-Calabi–Yau, triangulated category with a basic cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$.

As in I.1, \mathscr{C} Krull–Schmidt, 2-Calabi–Yau, triangulated category with a basic cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$.

Proposition (Buan–Marsh–Reiten, Keller–Reiten)

For all $X \in \mathscr{C}$, there is a triangle $\oplus T_i^{b_i} \to \oplus T_i^{a_i} \to X \to$

As in I.1, \mathscr{C} Krull–Schmidt, 2-Calabi–Yau, triangulated category with a basic cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$.

Proposition (Buan–Marsh–Reiten, Keller–Reiten)

For all $X \in \mathscr{C}$, there is a triangle $\oplus T_i^{b_i} \to \oplus T_i^{a_i} \to X \to \Sigma T^{\underline{b}}$.

As in I.1, \mathscr{C} Krull–Schmidt, 2-Calabi–Yau, triangulated category with a basic cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$.

Proposition (Buan–Marsh–Reiten, Keller–Reiten)

For all $X \in \mathscr{C}$, there is a triangle $\oplus T_i^{b_i} \to \oplus T_i^{a_i} \to X \to \Sigma T^{\underline{b}}$.

Definition (Dehy-Keller, P.)

$$\operatorname{ind}_T X = (a_i - b_i) \in \mathsf{K}_0^{\operatorname{split}}(\operatorname{add} T).$$

As in I.1, \mathscr{C} Krull–Schmidt, 2-Calabi–Yau, triangulated category with a basic cluster tilting object $T = T_1 \oplus \cdots \oplus T_n$.

Proposition (Buan–Marsh–Reiten, Keller–Reiten)

For all $X \in \mathscr{C}$, there is a triangle $\oplus T_i^{b_i} \to \oplus T_i^{a_i} \to X \to \Sigma T^{\underline{b}}$.

Definition (Dehy-Keller, P.)

$$\operatorname{ind}_T X = (a_i - b_i) \in \mathsf{K}_0^{\operatorname{split}}(\operatorname{add} T).$$

Remark (P.)

Given a triangle $X \to Y \to Z \xrightarrow{\varepsilon} \Sigma X$, we have

 $\operatorname{ind}_T Y = \operatorname{ind}_T X + \operatorname{ind}_T Z \Leftrightarrow \varepsilon \in (\Sigma T).$

II.1 - g-vectors and cluster categories

Idea (Padrol-P.-Pilaud-Plamondon)

When studying *g*-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$.

II.1 - g-vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying g-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$. By a result of [Herschend–Liu–Nakaoka], (\mathscr{C}, Δ_T) is "extriangulated".

II.1 - g-vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying g-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$. By a result of [Herschend–Liu–Nakaoka], (\mathscr{C}, Δ_T) is "extriangulated". Moreover, we have :

• T projective in (\mathscr{C}, Δ_T)

II.1 - g-vectors and cluster categories

II.1 - g-vectors and cluster categories

II.1 - g-vectors and cluster categories

Yann Palu Mutation in hereditary extriangulated categories.

II.1 - g-vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying *g*-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$. We have:

• T projective in (\mathscr{C}, Δ_T) .

II.1 - g-vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying *g*-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$. We have:

- T projective in (\mathscr{C}, Δ_T) .
- (\mathscr{C}, Δ_T) is hereditary: $\forall X \in \mathscr{C} \exists T^{\underline{b}} \to T^{\underline{a}} \to X \to \Sigma T^{\underline{b}}$.
II.1 - g-vectors and cluster categories

Idea (Padrol–P.–Pilaud–Plamondon)

When studying *g*-vectors, endow \mathscr{C} with the subclass Δ_T of triangles of the form $X \to Y \to Z \xrightarrow{(\Sigma T)} \Sigma X$. We have:

- T projective in (\mathscr{C}, Δ_T) .
- (\mathscr{C}, Δ_T) is hereditary: $\forall X \in \mathscr{C} \exists T^{\underline{b}} \to T^{\underline{a}} \to X \to \Sigma T^{\underline{b}}$.

•
$$T \to 0 \to \Sigma T \xrightarrow{1} \Sigma T \in \Delta_T$$
.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

II.2 - 0-Auslander extriangulated categories

${\mathscr C}$ extriangulated category For example:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

II.2 - 0-Auslander extriangulated categories

${\mathscr C}$ extriangulated category For example:

• C abelian or exact category,

II.2 - 0-Auslander extriangulated categories

- ${\mathscr C}$ extriangulated category For example:
 - C abelian or exact category,
 - C triangulated category,

II.2 - 0-Auslander extriangulated categories

- ${\mathscr C}$ extriangulated category For example:
 - 𝒞 abelian or exact category,
 - C triangulated category,
 - (\mathscr{C}, Δ_T) as in II.1,

II.2 - 0-Auslander extriangulated categories

- ${\mathscr C}$ extriangulated category For example:
 - C abelian or exact category,
 - C triangulated category,
 - (\mathscr{C}, Δ_T) as in II.1,
 - C extension-closed full subcategory of a triangulated category.

4 3 6 4 3

- ${\mathscr C}$ extriangulated category For example:
 - C abelian or exact category,
 - C triangulated category,
 - (\mathscr{C}, Δ_T) as in II.1,
 - $\bullet \ {\mathscr C}$ extension-closed full subcategory of a triangulated category.
- $\Rightarrow \mathsf{extriangles} \ X \rightarrowtail Y \twoheadrightarrow Z \dashrightarrow$

II.2 - 0-Auslander extriangulated categories

${\mathscr C}$ extriangulated category

Definition

 ${\mathscr C}$ is 0-Auslander if

N 4 3 N 4

II.2 - 0-Auslander extriangulated categories

${\mathscr C}$ extriangulated category

Definition

 $\ensuremath{\mathscr{C}}$ is 0-Auslander if

 $\textcircled{O} \ \ \mathcal{C} \ \ \text{has enough projectives and injectives,}$

.

${\mathscr C}$ extriangulated category

Definition

- ${\mathscr C}$ is 0-Auslander if
 - C has enough projectives and injectives,
 - ② *C* is hereditary: $\forall X \in C \exists P_1 \rightarrow P_0 \twoheadrightarrow X \dashrightarrow$ with P_0, P_1 projective,

${\mathscr C}$ extriangulated category

Definition

- ${\mathscr C}$ is 0-Auslander if
 - $\textcircled{O} \ \ \ \mathcal{C} \ \ has \ enough \ projectives \ and \ injectives,$

くロ と く 同 と く ヨ と 一

${\mathscr C}$ extriangulated category

Definition

 ${\mathscr C}$ is 0-Auslander if

- $\textcircled{O} \ \ \ \mathcal{C} \ \ has \ enough \ projectives \ and \ injectives,$

 ${\mathscr C}$ is reduced 0-Auslander if 0 is the only projective-injective.

< ロ > < 同 > < 三 > < 三 >

II.2 - 0-Auslander extriangulated categories

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

N 4 3 N 4

II.2 - 0-Auslander extriangulated categories

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

•
$$(\mathscr{C}, \Delta_T)$$
 where T cluster tilting.

.

II.2 - 0-Auslander extriangulated categories

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

- (\mathscr{C}, Δ_T) where T cluster tilting.
- $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda) \subseteq \mathcal{K}^{b}(\text{proj }\Lambda)$ two-term complexes.

周 ト イ ヨ ト イ ヨ ト

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

- (\mathscr{C}, Δ_T) where T cluster tilting.
- $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda) \subseteq \mathcal{K}^{b}(\text{proj }\Lambda)$ two-term complexes.

$$P^{-1} \stackrel{d}{\longrightarrow} P^{0} \longrightarrow (P^{-1} \stackrel{d}{\rightarrow} P^{0}) \longrightarrow P^{-1}[1]$$

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

- (\mathscr{C}, Δ_T) where T cluster tilting.
- $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda) \subseteq \mathcal{K}^{b}(\text{proj }\Lambda)$ two-term complexes.
- Extended cohearts of co-*t*-structures.

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

- (\mathscr{C}, Δ_T) where T cluster tilting.
- $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda) \subseteq \mathcal{K}^{b}(\text{proj }\Lambda)$ two-term complexes.
- Extended cohearts of co-t-structures.

 $(\mathscr{A},\mathscr{B})$ co-*t*-structure on a triangulated category \mathscr{T} . coheart : $\mathscr{S} = (\Sigma \mathscr{A}) \cap \mathscr{B}$

Examples

The following are examples of reduced 0-Auslander extriangulated categories:

- (\mathscr{C}, Δ_T) where T cluster tilting.
- $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda) \subseteq \mathcal{K}^{b}(\text{proj }\Lambda)$ two-term complexes.
- Extended cohearts of co-*t*-structures.

 $(\mathscr{A},\mathscr{B})$ co-*t*-structure on a triangulated category \mathscr{T} . coheart : $\mathscr{S} = (\Sigma \mathscr{A}) \cap \mathscr{B}$ extended coheart : $\mathscr{C} = \mathscr{S} * \Sigma \mathscr{S} = (\Sigma^2 \mathscr{A}) \cap \mathscr{B}$

(4月) (4日) (4日)

III.1 - Tilting objects

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka.

< ロ > < 同 > < 三 > < 三 >

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Definition

A rigid
$$(Ext^1(R, R) = 0)$$
 object $R \in \mathscr{C}$ is

• • = = • • = =

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Definition

- A rigid $(Ext^1(R, R) = 0)$ object $R \in \mathscr{C}$ is
 - (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \operatorname{add} R$,

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Definition

A rigid
$$(\operatorname{Ext}^1(R,R)=0)$$
 object $R\in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \operatorname{add} R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrow R_0 \rightarrow R_1 \rightarrow R_1 \rightarrow R_0$, $R_1 \in \mathsf{add} R$.

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Definition

A rigid
$$(Ext^1(R, R) = 0)$$
 object $R \in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \operatorname{add} R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrowtail R_0 \twoheadrightarrow R_1 \dashrightarrow$ with $R_0, R_1 \in \text{add } R$.
- (iii) cotilting if: $\forall I$ injective $\exists R_0 \rightarrow R_1 \rightarrow I \rightarrow W$ with $R_0, R_1 \in \text{add } R$.

- 4 周 ト 4 ヨ ト 4 ヨ ト

Based on work with Mikhail Gorsky and Hiroyuki Nakaoka. \mathscr{C} reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P.

Definition

A rigid
$$(Ext^1(R, R) = 0)$$
 object $R \in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \text{add } R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrow R_0 \rightarrow R_1 \rightarrow R_1 \rightarrow R_0$, $R_1 \in \text{add } R$.
- (iii) cotilting if: $\forall I$ injective $\exists R_0 \rightarrow R_1 \rightarrow I \rightarrow W$ with $R_0, R_1 \in \text{add } R$.

(iv) complete rigid if: |R| = |P|.

イロト イポト イラト イラト

III.1 - Tilting objects

Definition

A rigid
$$(Ext^1(R, R) = 0)$$
 object $R \in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \operatorname{add} R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrow R_0 \twoheadrightarrow R_1 \dashrightarrow$.
- (iii) cotilting if: $\forall I$ injective $\exists R_0 \rightarrow R_1 \rightarrow I \rightarrow .$
- (iv) complete rigid if: |R| = |P|.

くロ と く 同 と く ヨ と 一

Definition

A rigid
$$(\operatorname{Ext}^1(R,R)=0)$$
 object $R\in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \operatorname{add} R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrow R_0 \twoheadrightarrow R_1 \dashrightarrow$.
- (iii) cotilting if: $\forall I$ injective $\exists R_0 \rightarrow R_1 \rightarrow I \rightarrow \cdots \rightarrow R_1$
- (iv) complete rigid if: |R| = |P|.

Theorem

 $\mathscr C$ reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P. Then

•
$$R \text{ rigid} \Rightarrow |R| \leq |P|.$$

Definition

A rigid
$$(\operatorname{Ext}^1(R,R)=0)$$
 object $R\in \mathscr{C}$ is

- (i) maximal rigid if: $R \oplus X$ rigid $\Rightarrow X \in \text{add } R$,
- (ii) tilting if: $\forall P$ projective $\exists P \rightarrow R_0 \twoheadrightarrow R_1 \dashrightarrow$.
- (iii) cotilting if: $\forall I$ injective $\exists R_0 \rightarrow R_1 \rightarrow I \rightarrow I$.

(iv) complete rigid if: |R| = |P|.

Theorem

 $\mathscr C$ reduced 0-Auslander extriangulated, Hom-finite, Krull–Schmidt with a projective generator P. Then

- $R \text{ rigid} \Rightarrow |R| \leq |P|.$
- Conditions (i) to (iv) are equivalent.

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable. Then, there is a unique, up to isomorphism, indecomposable Y not isomorphic to X such that $\overline{R} \oplus Y$ is tilting.

• • = = • • = =

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable. Then, there is a unique, up to isomorphism, indecomposable Y not isomorphic to X such that $\overline{R} \oplus Y$ is tilting. Moreover, there is precisely one "exchange extriangle"

$$X \rightarrowtail E \twoheadrightarrow Y \dashrightarrow or Y \rightarrowtail E' \twoheadrightarrow X \dashrightarrow$$

with E or E' in add \overline{R} .

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable. Then, there is a unique, up to isomorphism, indecomposable Y not isomorphic to X such that $\overline{R} \oplus Y$ is tilting. Moreover, there is precisely one "exchange extriangle"

$$X \rightarrowtail E \twoheadrightarrow Y \dashrightarrow$$
 or $Y \rightarrowtail E' \twoheadrightarrow X \dashrightarrow$

with E or E' in add \overline{R} .

Corollary

Applied to $(\mathscr{C}, \Delta_{\mathcal{T}})$, recovers cluster tilting mutation.

< ロ > < 同 > < 三 > < 三 >

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable. Then, there is a unique, up to isomorphism, indecomposable Y not isomorphic to X such that $\overline{R} \oplus Y$ is tilting. Moreover, there is precisely one "exchange extriangle"

$$X \rightarrowtail E \twoheadrightarrow Y \dashrightarrow or Y \rightarrowtail E' \twoheadrightarrow X \dashrightarrow$$

with E or E' in add \overline{R} .

Corollary

Applied to $\mathcal{K}^{[-1,0]}(\text{proj }\Lambda)$, recovers 2-term silting mutation.

< ロ > < 同 > < 三 > < 三 >

III.2 - Mutation

Theorem

 \mathscr{C} reduced 0-Auslander extriangulated, Krull–Schmidt with a basic tilting object $R = \overline{R} \oplus X$ where X indecomposable. Then, there is a unique, up to isomorphism, indecomposable Y not isomorphic to X such that $\overline{R} \oplus Y$ is tilting. Moreover, there is precisely one "exchange extriangle"

$$X \rightarrowtail E \twoheadrightarrow Y \dashrightarrow or Y \rightarrowtail E' \twoheadrightarrow X \dashrightarrow$$

with E or E' in add \overline{R} .

Corollary

Applied to extended cohearts and combined with a theorem by Adachi–Tsukamoto, recovers mutation of intermediate co-*t*-structures.

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

э
III.3 - Flips are mutations

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

III.3 - Flips are mutations

イロト イボト イヨト イヨト

III.3 - Flips are mutations

イロト イボト イヨト イヨト

III.3 - Flips are mutations

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

イロト イボト イヨト イヨト

Let (Q, I) be the (gentle) blossming bound quiver associated with a grid.

Definition

The category of walks \mathscr{W} is the full, additive subcategory of mod $\mathbb{K}Q/I$ whose indecomposable objects are the indecomposable representations associated with walks in the grid.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (Q, I) be the (gentle) blossming bound quiver associated with a grid.

Definition

The category of walks \mathscr{W} is the full, additive subcategory of mod $\mathbb{K}Q/I$ whose indecomposable objects are the indecomposable representations associated with walks in the grid.

For a walk ω , write M_{ω} for the associated indecomposable representation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathcal{W} be the category of walks associated with (Q, I).

イロト イボト イヨト イヨト

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

• \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.

イロト イボト イヨト イヨト

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.

ヘロト ヘヨト ヘヨト

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.
- M_ω is projective but not injective in W if and only if ω turns precisely once, from top to right.

- 4 同 1 4 三 1 4 三 1

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.
- M_ω is projective but not injective in W if and only if ω turns precisely once, from top to right.
- M_ω is injective but not projective in W if and only if ω turns precisely once, from left to bot.

- 4 同 1 4 三 1 4 三 1

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.
- M_ω is projective but not injective in W if and only if ω turns precisely once, from top to right.
- M_ω is injective but not projective in W if and only if ω turns precisely once, from left to bot.
- ₩ is 0-Auslander.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.
- M_ω is projective but not injective in W if and only if ω turns precisely once, from top to right.
- M_ω is injective but not projective in W if and only if ω turns precisely once, from left to bot.
- ₩ is 0-Auslander.
- A walk ω kisses a walk γ if and only if $\operatorname{Ext}^{1}_{\mathscr{W}}(M_{\gamma}, M_{\omega}) \neq 0$.

< ロ > < 同 > < 三 > < 三 >

Let (Q, I) be the blossming bound quiver associated with a grid.

Theorem

Let \mathscr{W} be the category of walks associated with (Q, I). We have:

- \mathcal{W} is extension-closed in mod $\mathbb{K}Q/I$, hence exact.
- *M*_ω is projective-injective in *W* if and only if ω is a straight walk.
- M_ω is projective but not injective in W if and only if ω turns precisely once, from top to right.
- M_ω is injective but not projective in W if and only if ω turns precisely once, from left to bot.
- ₩ is 0-Auslander.
- A walk ω kisses a walk γ if and only if $\operatorname{Ext}^{1}_{\mathscr{W}}(M_{\gamma}, M_{\omega}) \neq 0$.

< ロ > < 同 > < 三 > < 三 >

III.3 - Flips are mutations

Corollary

- Non-kissing facets correspond to tilting objects in ${\mathscr W}$.
- Their flips correspond to mutation in \mathcal{W} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

III.3 - Flips are mutations

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

III.3 - Flips are mutations

イロト イボト イヨト イヨト

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

III.3 - Flips are mutations

Yann Palu Mutation in hereditary extriangulated categories.

III.3 - Flips are mutations

Thank you for your attention!

Yann Palu Mutation in hereditary extriangulated categories.

・ 同 ト ・ ヨ ト ・ ヨ ト