\mathbb{F}_1 -Representations and Hall Algebras

Alex Sistko (with Jaiung Jun) Preliminary Report

> Department of Mathematics Manhattan College

> > Sept. 16th 2021 FD Seminar

> > > \mathbb{F}_1 -Representations and Hall Algebras

▲ @ ▶ ▲ 三 ▶

-∢ ≣ →

Overview

- Background, results from Szczesny's 2011 paper [11].
 - "Doesn't a field need at least two elements?!?!"
 - Defining representations over \mathbb{F}_1 .
 - Associated Hall algebras.
- Results from Jun, Sistko's paper [4] (to appear in Algebras Represent. Theory).
 - Representation type over \mathbb{F}_1 .
 - Combinatorial description of categories, Hall algebras.
- New results:
 - New Hall algebra computations.
 - Refining techniques to compute Euler characteristics of quiver Grassmannians.

ヘロン 人間 とくほ とくほ とう

ъ

Background, Szczesny's results.

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ.

All quotes are from Oliver Lorscheid's expository work [9].

• What is \mathbb{F}_1 -geometry?

" \mathbb{F}_1 -geometry is a recent area of mathematics that emerged from certain heuristics in combinatorics, number theory and homotopy theory that could not be explained in the frame work of Grothendieck's scheme theory."

2 The "field" \mathbb{F}_1 is generally left undefined. Instead,

"what is needed for the aims of \mathbb{F}_1 -geometry is a suitable category of schemes over \mathbb{F}_1 ."

Several candidates for such categories exist, depending on the context.

(本間) (本語) (本語) (二語)

The category $Vect(\mathbb{F}_1)$

In [11], Szczesny defines a category of \mathbb{F}_1 -vector spaces:

\mathbb{F}_1 -vector spaces

- An object of $Vect(\mathbb{F}_1)$ is a finite pointed set $(V, 0_V)$.
- 2 The dimension of V is $\dim_{\mathbb{F}_1}(V) = |V| 1$.

\mathbb{F}_1 -linear maps

A morphism $f : V \to W$ in $Vect(\mathbb{F}_1)$ is a map of pointed sets such that $f \mid_{V \setminus f^{-1}(0_W)}$ is an injection.

Basic Properties

 $Vect(\mathbb{F}_1)$ has:

- Quotients, subobjects, (co)kernels, 1st Iso. Theorem
- Zero objects/maps,
- **③** Two symmetric monoidal structures $V \oplus W$ and $V \otimes W$.

Quiver representations over \mathbb{F}_1

Let Q be a finite quiver, C(Q) the free category on Q. Then

Representations of Q over \mathbb{F}_1

• Rep (Q, \mathbb{F}_1) is the category of functors

 $M: C(Q) \to {\rm Vect}(\mathbb{F}_1)$

with natural transformations as morphisms.

2 The dimension of an object M in $\operatorname{Rep}(Q, \mathbb{F}_1)$ is $\sum_{u \in Q_0} \dim_{\mathbb{F}_1}(M(u)).$

Nilpotent representations over \mathbb{F}_1

 $\operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}}$ is the full subcategory of functors *M* for which there exists a natural number *n* such that for all paths $p = \alpha_1 \cdots \alpha_m$ of length $m \ge n$,

 $M(\alpha_m)\circ\cdots\circ M(\alpha_1)=0.$

F₁-Representations and Binary Matrices

2-Loop quiver:

$$Q = \bigcirc \bullet \bigcirc$$

In the second second

$$egin{array}{rcl} Q=&1 & \longrightarrow 2 & . \ & \left\{0, e_1, e_2
ight\} & rac{\left(1 \ 0
ight)}{\left(0 \ 1
ight)} & \left\{0, e_1
ight\} \end{array}$$

•

э

э

Basic properties [11]

First properties of $\operatorname{Rep}(Q, \mathbb{F}_1)$

- Rep(Q, F₁) a zero object, sub/quotient objects, kernels and cokernels.
- 2 Rep (Q, \mathbb{F}_1) has a symmetric monoidal structure $V \oplus W$.
- The 1st Isomorphism, Jordan-Hölder, and Krull-Schmidt Theorems hold.
- For any field k, there is a base-change functor

$$-\otimes_{\mathbb{F}_1}k: \operatorname{\mathsf{Rep}}(Q,\mathbb{F}_1) o \operatorname{\mathsf{Rep}}(Q,k)$$

All the above statements also hold for $\operatorname{Rep}(Q, \mathbb{F}_1)_{nil}$.

Extra properties for $\operatorname{Rep}(Q, \mathbb{F}_1)_{nil}$

- $\operatorname{Rep}(Q, \mathbb{F}_1) = \operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}}$ iff Q is acyclic.
- ② Simples in $\operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}} \Leftrightarrow$ vertices of *Q*.

Hall algebras of $\mathbb{F}_1\text{-}\mathsf{representations}$

 $\operatorname{Rep}(Q, \mathbb{F}_1)$ has an associated Hall algebra H_Q .

• H_Q = finitely-supported functions $Iso(Q) \rightarrow \mathbb{C}$.

2
$$M, N \in Iso(Q) \Rightarrow \delta_M \delta_N = \sum_{R \in Iso(Q)} \frac{P_{M,N}^n}{a_M a_N} \delta_R$$
, where

$$P^{R}_{M,N} = \#\{s.e.s.0 \rightarrow N \rightarrow R \rightarrow M \rightarrow 0\}$$

$$a_M = \#\operatorname{Aut}(M).$$

■ H_Q is a Hopf algebra with coproduct $\Delta(f)(\delta_M, \delta_N) = f(\delta_{M \oplus N}).$

• $H_Q \cong U(\mathfrak{n}_Q)$, where $\mathfrak{n}_Q = \text{Lie}$ algebra of primitive elements.

The same holds for nilpotent representations, and we denote the associated Hall algebra $H_{Q,nil}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem 1 [11]

Let Q be a quiver without self-loops and underlying graph \overline{Q} . Let $\mathfrak{g}(\overline{Q}) = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ denote the associated symmetric Kac-Moody algebra. Then there exists a Hopf algebra homomorphism $\rho : U(\mathfrak{n}_+) \to H_Q$.

Further results from [11]:

- If \overline{Q} is a tree, then ρ is surjective.
- 2 If Q is of type \mathbb{A}_n , then ρ is an isomorphism.
- If Q is the Jordan quiver, then H_{Q,nil} is the ring of symmetric functions.
- $H_{Q,\text{nil}}$ is computed when Q is $\tilde{\mathbb{A}}_n$ with the equi-orientation.

・ロット (雪) () () () ()

Results from Jun Sistko [4].

ヘロト 人間 とくほとくほとう

Highlights of [4]

Representation type over \mathbb{F}_1

- Olassify the *Q* of finite and bounded representation type over 𝑘₁.
- Obscribe the remaining Q's through representation embeddings.

Coefficient Quivers and Hall algebras

To any \mathbb{F}_1 -representation *M* one can associated a coefficient quiver (Γ_M , c_M).

- Interpret Rep(Q, F₁) and Rep(Q, F₁)_{nil} in terms of coefficient quivers.
- **2** Give a combinatorial description of H_Q and $H_{Q,nil}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

A preorder on quivers

Definition

For any Q, there is a function $NI_Q : \mathbb{N} \to \mathbb{Z}_{\geq 0}$,

 $NI_{Q}(n) = \# \left(\{ \text{ n-dim. indecomp. in } Rep(Q, \mathbb{F}_{1})_{nil} \} / \cong \right).$

Definition

We write $Q \leq_{nil} Q'$ if and only if there exists $C \in \mathbb{R}_{>0}$ and $D \in \mathbb{N}$ such that

$$\operatorname{NI}_Q(n) \leq C \cdot \operatorname{NI}_{Q'}(Dn)$$
 for $n >> 0$.

We write $Q \approx_{nil} Q'$ if and only if $Q \leq_{nil} Q'$ and $Q' \leq_{nil} Q$.

Example

For $n \ge 0$, let \mathbb{L}_n denote the quiver with one vertex and n loops.

$$\bigcirc \mathbb{L}_0 \not\approx_{\mathsf{nil}} \mathbb{L}_1 \text{ and } \mathbb{L}_1 \not\approx_{\mathsf{nil}} \mathbb{L}_2.$$

2)
$$\mathbb{L}_m \approx_{\mathsf{nil}} \mathbb{L}_n$$
 for all $m, n \geq 2$.

Finite type over \mathbb{F}_1

Q has finite type over \mathbb{F}_1 if $NI_Q(n) = 0$ for n >> 0.

Theorem [4]

Let *Q* be a connected quiver. Then the following are equivalent.

- Q has finite type.
- $Q \approx_{\mathsf{nil}} \mathbb{L}_0.$
- $\bigcirc \overline{Q}$ is a tree.

Note: $(3) \Rightarrow (1)$ was proven in [11].

ヘロン 人間 とくほ とくほ とう

3

Bounded type over \mathbb{F}_1

Q has **bounded type** over \mathbb{F}_1 if $NI_Q = O(1)$ (big-*O* notation).

Theorem [4]

Let *Q* be a connected quiver. Then the following are equivalent:

- Q is of bounded type.
- $Q \leq_{\mathsf{nil}} \mathbb{L}_1.$
- \bigcirc \overline{Q} is a tree or a cycle.

Furthermore, $Q \approx_{nil} \mathbb{L}_1$ if and only if \overline{Q} is a cycle.

く 同 ト く ヨ ト く ヨ ト

Definition

A connected quiver Q is called a **proper pseudotree** if Q is not a tree or a cycle and $H_1(\overline{Q}, \mathbb{Z}_2) = \mathbb{Z}_2$.

Theorem [4]

Let *Q* be a connected quiver that is not of bounded type over \mathbb{F}_1 . Then there exists a fully faithful, exact functor

 $\operatorname{Rep}(Q', \mathbb{F}_1)_{\operatorname{nil}} \to \operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}},$

where Q' is either a proper pseudotree or \mathbb{L}_2 . If Q is not a proper pseudotree, then $Q \approx_{nil} \mathbb{L}_2$.

イロト イポト イヨト イヨト

Coefficient quivers

Definition

Let $M = (\{M_u\}_{u \in Q_0}, \{f_\alpha\}_{\alpha \in Q_1})$ be an object in $\operatorname{Rep}(Q, \mathbb{F}_1)$. The **coefficient quiver** of M is a pair (Γ_M, c_M) , where Γ_M is a quiver and $c_M : \Gamma_M \to Q$ is a quiver map. The vertex set of Γ_M is

$$(\Gamma_M)_0 = \bigsqcup_{u \in Q_0} M_u \setminus \{0\},\$$

with $c_M(M_u \setminus \{0\}) = u$ for all $u \in Q_0$. For $\alpha \in Q_1$, there is an arrow $u \xrightarrow{\tilde{\alpha}} v$ in Γ_M with $c_M(\tilde{\alpha}) = \alpha$ if and only if $v = f_{\alpha}(u)$.

Note

It is often convenient to think of Γ_M as a quiver colored by the vertices and arrows of Q.

・ロト ・四ト ・ヨト・

- **Coefficient Quivers (Ringel [10]):** Γ_M is the coefficient quiver of $M \otimes_{\mathbb{F}_1} k$ with respect to the obvious basis.
- **Over-Quivers (Kinser [5]):** Γ_M is a quiver over Q with the map $c_M : \Gamma_M \to Q$.

個 とくき とくき とう

An example

Consider again the following representation of \mathbb{L}_2 :

Then the colored quiver follows below, where the right loop is in solid red and the left loop is in dotted blue:

 $\mathbb{F}_1\text{-}\mathsf{Representations}$ and Hall Algebras

Basic properties of Γ_M

Definition

A quiver map $c : \Gamma \to Q$ is a **winding** if for all $\alpha, \beta \in \Gamma_1$, $c(\alpha) = c(\beta) \Rightarrow s(\alpha) \neq s(\beta)$ and $t(\alpha) \neq t(\beta)$.

Lemma [4]

Let *M* be an object of $\operatorname{Rep}(Q, \mathbb{F}_1)$. Then the following hold:

- $c_M : \Gamma_M \to Q$ is a winding.
- **2** *M* is nilpotent $\Leftrightarrow \Gamma_M$ is acyclic.
- **I** is indecomposable $\Leftrightarrow \Gamma_M$ is connected.
- *M* is simple $\Leftrightarrow \Gamma_M$ is strongly connected.

Proposition [4]

Let $c : \Gamma \to Q$ be a winding. Then there is an \mathbb{F}_1 -representation M of Q (unique up to isomorphism) such that $c_M = c$.

Morphisms in $\operatorname{Rep}(Q, \mathbb{F}_1)$ and coefficient quivers

A morphism $M \to N$ as gluing Γ_M to Γ_N (compare to [6]:

 \mathbb{F}_1 -Representations and Hall Algebras

Definitions

Let $c : \Gamma \to Q$ be a winding.

- A full subquiver S of Γ is said to be **successor-closed** (resp. **predecessor-closed**) \Leftrightarrow for any arrow $\alpha \in \Gamma_1$, $t(\alpha) \in S_1 \Rightarrow s(\alpha) \in S_1$ (resp. $s(\alpha) \in S_1 \Rightarrow t(\alpha) \in S_1$).
- **2** Let $c' : \Gamma' \to Q$ be another winding. A quiver isomorphism $\phi : \Gamma \to \Gamma'$ is a **coefficient isomorphism** if $c' \circ \phi = c$.

Theorem [4]

Let *M* and *N* be \mathbb{F}_1 -representations of a quiver *Q*. Then the morphisms $M \to N$ are in bijective correspondence with coefficient isomorphisms $\phi : \mathcal{C} \to \mathcal{D}$, where $\mathcal{C} \subset \Gamma_M$ is successor-closed and $\mathcal{D} \subset \Gamma_N$ is predecessor-closed.

ヘロト ヘワト ヘビト ヘビト

Short exact sequences and coefficient quivers

A short exact sequence $0 \rightarrow M \rightarrow R \rightarrow N \rightarrow 0$ as stacking Γ_M and Γ_N :

 $\mathbb{F}_1\text{-}\mathsf{Representations}$ and Hall Algebras

э

Definition

Let $c : \Gamma \to Q$ be a winding. Consider Γ as a quiver colored by the vertices and arrows of Q. For any $\alpha \in Q_1$, a vertex $v \in \Gamma$ is called an α -source (resp. α -sink) if there is no α -colored arrow ending at (resp. starting at) v.

Theorem [4]

Let $0 \to M \to R \to N \to 0$ be a short exact sequence of \mathbb{F}_1 -representations of Q. Then Γ_R is obtained from the disjoint union $\Gamma_M \sqcup \Gamma_N$ by adding certain α -colored arrows from α -sinks of Γ_N to α -sources of Γ_M . Under this decomposition, Γ_M is a predecessor-closed subquiver of Γ_R and Γ_N is a successor-closed subquiver of Γ_R .

・ 同 ト ・ 三 ト ・

Corollary [4]

Let *Q* be a finite quiver. Then H_Q is generated (as an algebra) by connected coefficient quivers. Similarly, $H_{Q,nil}$ is generated by connected acyclic coefficient quivers.

Note

In the formula

$$\delta_M \delta_N = \sum_R \frac{P_{M,N}^R}{a_M a_N} \delta_R,$$

 $P_{M,N}^R \neq 0 \Leftrightarrow \Gamma_R$ admits a decomposition as in the previous theorem.

イロト イポト イヨト イヨト

Current research.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

New Hall algebra computations

Problem: If *Q* and *Q'* are two different orientations of a single graph, how close are their \mathbb{F}_1 -representation theories?

Theorem (Jun Sistko 2021)

Let Q and Q' be two orientations of a single tree T. Then $H_Q \cong H_{Q'}$.

Note: Szczensy *only* proves surjectivity of $\rho : U(\mathfrak{n}_+) \to H_Q$.

Theorem (Jun Sistko 2021)

Let Q be an acyclic quiver of type $\tilde{\mathbb{A}}_n$, with \mathfrak{n}_Q the Lie algebra of primitive elements of $H_{Q,nil}$. Furthermore, let \mathfrak{n} denote the Lie algebra of primitive elements in $H_{Q',nil}$, where Q' is the equioriented quiver of type $\tilde{\mathbb{A}}_n$. Then $\mathfrak{n}_Q/Z(\mathfrak{n}_Q) \cong \mathfrak{n}$.

Note: By [4], this describes (nilpotent) Hall algebras of bounded type over \mathbb{F}_1 .

Euler characteristics of quiver Grassmannians

Results from Literature

- Revelant to cluster algebras [1].
- Euler characteristics for string modules computed by Cerulli-Irelli in [3].
- Techniques expanded by Haupt in [2], applied to tree and band modules.
- Similar ideas appear in Lorscheid's work [7, 8].

Note: Many of these representations are defined over \mathbb{F}_1 !

Our goals

- Further develop the techniques in [2, 3].
- Characterize F₁-reps where these techniques are applicable.
- Find formulas for the associated Euler characteristics.

Gradings of representations [2]

Throughout, let *M* be an \mathbb{F}_1 -representation of *Q* with colored quiver $(\Gamma, c) := (\Gamma_M, c_M)$. Let $\underline{d} = \underline{\dim}_{\mathbb{F}_1}(M)$ and $\underline{e} \leq \underline{d}$.

- A grading of *M* (equiv. *c*) is a map $\partial : \Gamma_0 \to \mathbb{Z}$.
- If ∂₁,..., ∂_n are gradings of M ⇒ a grading ∂ is (∂₁,..., ∂_n)-nice, if whenever two arrows α, β ∈ Γ₁ satisfy:

$$\boldsymbol{c}(\alpha) = \boldsymbol{c}(\beta),$$

$$\partial_i(\boldsymbol{s}(\alpha)) = \partial_i(\boldsymbol{s}(\beta)), \ i = 1, \dots, n$$

$$\partial_i(t(\alpha)) = \partial_i(t(\beta)), \ i = 1, \dots, n$$

we have $\partial(t(\alpha)) - \partial(s(\alpha)) = \partial(t(\beta)) - \partial(s(\beta))$.

3 A nice grading (or \emptyset -nice grading) is where $c(\alpha) = c(\beta) \Rightarrow \partial(t(\alpha)) - \partial(s(\alpha)) = \partial(t(\beta)) - \partial(s(\beta)).$

Example

Let $Q = \mathbb{L}_2$, with arrow set $Q_1 = \{\alpha_1, \alpha_2\}$. Let *M* be the representation with quiver

$$\Gamma_{M} = \bullet \xrightarrow{\alpha_{1}} \bullet \xrightarrow{\alpha_{2}} \bullet \xleftarrow{\alpha_{1}} \bullet \xleftarrow{\alpha_{2}} \bullet$$

• A nice grading ∂_0 on *M*:

$$0 \xrightarrow{+1} 1 \xrightarrow{+2} 3 \xleftarrow{+1} 2 \xleftarrow{+2} 0$$

2 A ∂_0 -nice grading ∂_1 on *M*:

$$0 \xrightarrow{+1} 1 \xrightarrow{+1} 2 \xleftarrow{-1} 3 \xleftarrow{-1} 4$$

٠

•

٠

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Nice gradings and quiver Grassmannians (cont.)

Assumption

Suppose that for all $i \leq n$, ∂_i is a $(\partial_1, \ldots, \partial_{i-1})$ -nice grading (with ∂_1 a nice grading).

Gradings of representations cont. [2]

Let $\chi_{\underline{e}}(M \otimes_{\mathbb{F}_1} \mathbb{C})$ denote the Euler characteristic of the quiver Grassmannian $\operatorname{Gr}_{\underline{e}}^Q(M \otimes_{\mathbb{F}_1} \mathbb{C})$.

- $(\partial_1, ..., \partial_n) \Rightarrow X^{\partial_1, ..., \partial_n} \subset \operatorname{Gr}_{\underline{e}}^Q(M \otimes_{\mathbb{F}_1} \mathbb{C})$ locally-closed, same Euler characteristic.
- ② If for each $x, y \in \Gamma_0$, there exists $i \le n$ with $\partial_i(x) \ne \partial_i(y)$, then

$$\chi_{\underline{e}}(M \otimes_{\mathbb{F}_1} \mathbb{C}) = |\{N \leq M \mid \dim_{\mathbb{F}_1}(N) = \underline{e}\}|.$$

Euler characteristic counts the "F₁-points" of the quiver Grassmannian!

Representations with finite nice length

Question

When does there exists a sequence $\partial_1, \ldots, \partial_n$?

Nice length (Jun Sistko 2021)

- A nice sequence for M = a collection $\underline{\partial} = \{\partial_i\}_{i \ge 0}$ s.t. ∂_i is a $(\partial_0, \ldots, \partial_{i-1})$ -nice grading for all *i* $(\partial_0$ is nice).
- 2 The nice length of *M* = the smallest *n* s.t. there is a nice sequence <u>∂</u> with the property that for all *x*, *y* ∈ Γ₀, ∂_i(*x*) ≠ ∂_i(*y*) for some *i* ≤ *n*. We write nice(*M*) = *n* (and nice(*M*) = ∞ if no such *n* exists).
- ③ nice(*M*) < ∞ ⇒ the previous formula holds for all $\underline{e} \leq \underline{d}$.

ヘロン ヘアン ヘビン ヘビン

Example

Let $Q = \mathbb{L}_2$, with arrow set $Q_1 = \{\alpha_1, \alpha_2\}$. Let *M* be the representation with quiver

$$\Gamma_{M} = \bullet \xrightarrow{\alpha_{1}} \bullet \xrightarrow{\alpha_{2}} \bullet \xleftarrow{\alpha_{1}} \bullet \xleftarrow{\alpha_{2}} \bullet$$

A generic nice grading on M:

$$x \xrightarrow{+\Delta_1} x + \Delta_1 \xrightarrow{+\Delta_2} x + \Delta_1 + \Delta_2 \xleftarrow{+\Delta_1} x + \Delta_2 \xleftarrow{+\Delta_2} x$$

The start and finish always have the same image!

2 The existence of the sequence ∂_0 , ∂_1 with ∂_1 injective implies that nice(M) = 1.

御 とくほ とくほとう

.

Current work

The category $\operatorname{Rep}(Q, \mathbb{F}_1)^{\operatorname{nice}}_{\operatorname{nil}}$ (Sistko Jun 2021)

- Rep(Q, 𝔽₁)^{nice}_{nil} = full subcategory generated by *M* with nice(*M*) < ∞.
- Contains all tree representations and (primitive) "band" representations (recovering results from [2, 3]).
- Olosed under sub/quotient objects, certain types of gluing.
- New families in $\operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}}^{\operatorname{nice}}$ identified.
- So $\operatorname{Rep}(Q, \mathbb{F}_1)_{\operatorname{nil}}^{\operatorname{nice}}$ characterized when Q is a pseudotree.

Hall algebra computations (Jun Sistko 2021)

- Rep $(Q, \mathbb{F}_1)_{nil}^{nice}$ has a Hall algebra $H_{Q,nil}^{nice}$.
- 2 $H_{Q,\text{nil}}^{\text{nice}} = H_{Q,\text{nil}}/\langle \delta_M | \text{nice}(M) = \infty \rangle.$
- Solution State St

Example

Let Q be an acyclic quiver of type $\tilde{\mathbb{A}}_n$.

Indecomposables of finite nice length

- The indecomposables in Rep(Q, F₁)_{nil} = Rep(Q, F₁) are either strings or "bands" [4].
- Strings have finite nice length (tree representations).
- So For each m ≥ 1, there is a "band" representation B_n (decomposable over C if m > 1).

• nice
$$(B_m) < \infty \Leftrightarrow m = 1$$
.

Image of the Hall algebra of "absolutely indecomposable" representations (i.e. *M* such that *M* ⊗ *k* is indecomposable for any *k* = *k*).

(本間) (本語) (本語)

Related to this talk

- If *Q* is of unbounded type and *Q'* is a different orientation, determine the relationship between $H_{Q,nil}$ and $H_{Q',nil}$.
- 2 Find combinatorial characterizations for nice(M) $< \infty$.
- Ompute gradings efficiently.

Other directions

- Classification for non-nilpotent simples?
- Classification for absolutely indecomposable representations?
- Onnections to crystal bases?

・ 同 ト ・ ヨ ト ・ ヨ ト

Thanks for listening!

<ロト <回 > < 注 > < 注 > 、

æ

Caldero, P. and Chapoton, F. Cluser algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81, no. 3, 2006, 595-616.

- Haupt, N. Euler characteristic of quiver Grassmannians and Ringel-Hall algebras of string algebras. Algebras Represent. Theory 15, 2012, 755-793.
- Cerulli-Irelli, G. Quiver grassmannians associated with string modules. J Algebraic Combin. 33, 2011, 259?276.
- Jun, J. and Sistko, A. On quiver representations over 𝔽₁. To appear in Algebras Represent. Theory. Preprint available online at https://arxiv.org/abs/2008.11304>.
- Kinser, R. Rank functions on rooted tree quivers. Duke Math. J. 152(1), 2010, 27-92.
- Krause, H. Maps between tree and band modules. J. Algebra 137, 1991, 186-194.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Lorscheid, O. Schubert decompositions for quiver grassmannians of tree modules. Algebra Number Theory 9, no. 6, 2015, 1337-1362.
- Lorscheid, O. On Schuber decompositions of quiver grassmannians. J. Geom. Phys. 76, 2014, 169-191.
- Lorscheid, O. 𝔽₁ for everyone. Accessed online at <https://arxiv.org/pdf/1801.05337.pdf>.
- Ringel, C. M. Exceptional modules are tree modules. Linear Algebra Appl. 275-276, 1998, 471-493.
- Szczesny, M. Representations of quivers over 𝔽₁ and Hall algebras. *Int. Math. Res. Not. IMRN*, 2012(10), 2011, 2377-2404.

・ 同 ト ・ ヨ ト ・ ヨ ト …