Stable
Invariance of Structures on Horhscluild Cohoundogy
Joint with
Leeonard Rubioy Degassi and (party) Manued Saonín

part 1 Stable in variance of the "p power structure "on HH (A)
Part 2 Maximal tori in $H^{\prime}(A)$ and the fundamental group
A is finite din algeka over a field $k=\bar{k}$ (nat needed)

$$
A^{e v}=A^{D D} \otimes A \quad \text { and } \quad H H^{*}(A)=E \times A_{A^{e v}}^{*}(A, A)
$$

is the Hochschild cohanology of A.

Fout

$$
\begin{aligned}
& H H^{\prime}(A) \cong \frac{\operatorname{Der}_{k}(A, A)}{\binom{\text { inner denviations }}{(a,-]}} \quad \begin{array}{c}
\text { is a finte dinenscinial } \\
\text { Lie algebiar due } k
\end{array} \\
& \text { bracket: }[\alpha, \beta]=\alpha \beta-\beta \alpha
\end{aligned}
$$

Recent interst in the stunctuve of $H H^{\prime}(A)\left(E_{D} D\right.$, Linckelmann, Sclooll, Soloter, Chaparro $)$
Benson, Kessar, Eisele, Raedscheiders...-
If char $k=p>0$ then $H H^{\prime}(A)$ is a nestricted Lie algeba
$\stackrel{\text { ie }}{\underline{\text { e }}}$ thes is a p-power operation $H H^{\prime}(A) \rightarrow H \Gamma^{\prime}(A): \alpha \mapsto \alpha^{p}$ clack:
$\alpha^{p}(x y)=\sum\binom{\ell}{i} \alpha^{i}(x) \alpha^{\rho-1}(y)=\alpha^{P}(x) y+x \alpha^{f}(y)$ is a denciontion
(and this nespects inner derinations)

In fuct all of $H H>O(A)$ is a graded nestucted Lie algobra. But focers on $H H^{\prime}(A)$:

ERarple $A=\frac{k[x]}{x^{p}} \quad \partial_{x}\left(x^{\rho}\right)=\rho x^{p-1}=0 \quad\left[x^{i} \partial_{x}, x^{j} \partial_{x}\right]=(j-i) x^{i+j-1} \partial_{x}$

$$
\Rightarrow H H^{\prime}(A)=\operatorname{span}\left\{\partial_{x}, x \partial_{x}, \ldots x^{p-1} \partial_{x}\right\} \quad\left(x^{i} \partial_{x}\right)^{p}= \begin{cases}0 & i \neq 1 \\ x \partial_{x} & i=1\end{cases}
$$

This is the Jacobson-Witt hie algeba (see RyD-Linccalmann '18)

Motivation: Need the p power operation to do Live theory in positive characteristic. eg $T \subseteq L$ is called a torus

If $[T, T]=0$ and T^{-i} generated by elements with $x^{p}=x$ if k perfect

EG $\left(x \partial_{x}\right)$ is the only \neq tons in the JW Lie algebra above. rank $=$ maxdin of fores $=1$ in this case.
ouse this in second half.

Assume A is self injectrie: then the stable module category $\bmod A$ is triangulated
cat of
fo A nodules with $\operatorname{Hom}_{A}(M, N)=\operatorname{Hom}_{A}(M, N)$ (maps which factor $\begin{gathered}\text { (trough a projectue })\end{gathered}$

Defoe (Broué 94) A stable equivalence of Martin type $A \sim_{s \in n \pi} B$ is a pair of binodules $M_{B} \quad N_{A}$ each projechie on either side $M_{B} N \simeq A$ in med $A^{e r} \& \quad N_{A}^{\infty} M=B$ in $\underline{\bmod } B^{e r}$.

This induces an equivaluce of Δ 'd cals

$$
\underline{\bmod A} \xrightarrow[S_{B}^{A}]{\stackrel{-\operatorname{sig}_{4}^{M}}{\leftrightarrows}} \bmod B
$$

porblem: dores eney equivaluce canc from a SEMT?
there one mone gereal than
Example $A_{4} \subseteq A_{5}$, der $k=2$ devived equivalences
indues a some $k A_{4} \sim k A_{5}$ using $M=k A_{5}$
"because $A_{4} A_{3}$ hene the same sylow 2 subgrops" (Laidelmauns book)

Big problen clessify alyeleas (or groups) up to SEMT.
\Rightarrow wont invericits (Ea because Anslocler Raiten cijetine)

Hochschild cohomology is a dewnied Marita invoriant
but $H H^{\circ}(A)=Z(A)$ not stably invaniont:
eg $Z\left(k A_{4}\right) \neq Z\left(k A_{5}\right)$
Themen (x_{i} or, König, Liu, Zhou '12)
A, B fod (self inj) symetric algebas and A seme B, there is an isain tr $M: H H^{>0}(A) \xrightarrow{\cong} H_{H}^{>0}(B) \quad$ respectiving the
"trousfer Map, Bouc" diss Linckelenan aup product and genstenhaker bracket
$=$ proof uses $b V$ operator $\Delta: \mathrm{HH}^{2} \rightarrow \mathrm{HH}^{*-1}$

$$
\Delta(x y)-\Delta(x) y-\left.\Leftrightarrow\right|^{|x|} \times \Delta(y)=[x, y]
$$

- But it is impossible to write the p-poner operation in tens of Δ (KyD thesis)
(And transfer maps do not respect p-power map in geneal)
So:
Question (Linckelmain) Does the transfer map ass ocietled to a SEMT respect the p-power man?
(RaD $R^{\prime} \mid z$) Yes for $H_{1 H}^{\prime}(A) \subseteq H_{H} H^{\prime}(A)$ the "integrable derivations"
Theorm ($-R_{y} D$ \20) interesting but a different story

If A, B are $f d$. self injection algetras, cloak $=P$, and $A_{\text {sennet }}$ then $t_{M}: H H^{>0}(A) \cong H H^{>0}(B)$ ism of restricted graded Lie algebras.

So the restricted Lie algebra $H H^{\prime}(A)$ is a stable invariant

Corollary

$$
\begin{aligned}
& \text { maximal tori } \\
& \text { in } H H^{\prime}(A)
\end{aligned} \leftrightarrow \quad \begin{aligned}
& \text { maxmial twi } \\
& \text { in } H H^{\prime}(B)
\end{aligned}
$$ part 2

The proof . uses the B_{∞} structure on the Hochschill cochair complex $C^{*}(A)$

- the p-power operation car be expressed in terms of the Bo Structure (work of Turchin' 06 also uppendix of our paper)

Note: B_{∞} algelons defied by Zones - Getzler
But Gerstenhaber defined essentially the same Hencig in "on the defy of rings and algebras III" 68 cool staff. called them composition complexes.

Port 2 the fundamental group:
Let Q be a quiver, $I \leq E Q$ adunisible ideal,
$A=\frac{k Q}{I}$ fd basic algebra

- $k Q$ has a basis of paths $\left\{p_{i}\right\}$
- I has a basis of minimal relations $\left\{r=\sum a_{i} p_{i}\right\}$ no proper sub-sum of r is in I
- say $P_{i} \sim P_{j}$ if they both occur in a minimal relation.
- a walk is a path in $Q \cup Q^{-1}$ up to the equivalence relation generated by
- $x a a^{-1} y \sim x y$
- $x p_{i} y \sim x p_{j} y \quad \& \quad p_{i} \sim p_{j}$
- $\pi_{1}(Q, I)=\frac{\{\text { walks } v \rightarrow v\}}{\sim}$
this iv a fy grape using concatenations.
Pick $v \in Q_{0}$ vertex: dost depend on e unto ism
This defintion is due to Martinez-Villa and de la Peña.

Exaple

$$
\text { if } I=(0) \quad \pi_{1}(Q, I)=\pi_{1}(|Q|)
$$

Note: thee
seme hilds if
I is monomial
the topological fundanental group of the undelying gaiph of Q

Exangle (from he Meur '05) $Q=$

$$
\begin{array}{rll}
I=(d a) & J=(d a-d c b) & \text { But } \\
\pi_{1}(Q, \pm) \cong \mathbb{Z} & \pi_{1}(Q, J) \cong 0 & k Q / \pm \cong k Q / J
\end{array}
$$

So the fundamental group depends on the choice of presentation...
we wart to use π_{1} as a stable invariant that tells us about the shape of the quiver, but it sort even an iuvoriont of A. Doit worry!

As (Q, I) corries (moduli spare of presentations of A)
you different $\pi_{1}(Q, I) \rightarrow$ generically 3 er
\rightarrow special pts get maximal findermental groups (Le Mems)

Theoneun (Assem-de la Reña '96, de la Rễa Saumin 'oo)

$$
\operatorname{Hom}_{k}\left(\pi_{1}(Q I), k\right) \longrightarrow H^{\prime}(A)
$$

and the iunage is a torus in $H H^{\prime}(A)$.

Qustini which tori do you get?
(le Mour 110) You get all the maximal twi if eettur

- K has clear O and Q has no double by passes
- A is monomial and Q has no orreited coles and no parallel arrows

Theonem (-RyD Sanin 21)
For any A, eney maximal torns in $H H^{\prime}(A)$ is the inage of some $\pi_{1}(Q, I)$.*

Get a comespondecue: proet uses Legrange intevpoctation.

Cor the unaxinal rouk of $\pi_{1}(Q, I)$, for any presatatici $A=\frac{k Q}{I}$ is a stable invaniant a uses part (1)
*
Note if dur $k=0$ use souk $=\operatorname{din} \mathbb{Q} \underset{\mathbb{B}}{\mathbb{R}_{1}}(Q, I)$
If $\operatorname{din} k=P$ use p-rank $=\operatorname{din} \mathbb{F}_{p} \mathbb{Q}_{\mathbb{Z}} \pi_{1}(Q$, I)
could be bigger if $\pi_{\text {, }}$ has p torsion!
Fact rank $\pi_{1}(Q, I) \leq$ of Lodes in $Q=\left|\begin{array}{c}\text { conceded } \\ \text { components }\end{array}\right|-\left|Q_{0}\right|+\left|Q_{1}\right|$
equality for monomial algebras
you can tell how may "holes" A has from its devised / stable equivalence class
Cor Derived equivalent monount algebras have the same number of anons $\rightarrow\left\{\begin{array}{l}\text { Compare Avella-Alaminos } \\ \text { and Antibes gentle alg }\end{array}\right.$ Braver graph algebras.

Final application

A sully converted if $\pi,(Q I)=0$ for all presentations $A \cong k Q / I$ is this equivalent to $\operatorname{HH}^{\prime}(A)=0$?

Yes in lots of cases
but \exists conter example due to Buhweit's Live.

Budweis Lin, Cohelo Lan gilda Savialic Assam Lanzilath se men Bustamante

Cor A is simply connected $\Leftrightarrow H H^{\prime}(A)$ has no tori in particular, being simply connected is closed under SEMT parts

