FD seminar – Bonn

Attractors of torus actions on quiver moduli

H. Franzen

Ruhr-Universität Bochum

March 11, 2021

Families of indecomposable representations

Let

- Q connected quiver
- $\langle _, _ \rangle_Q : \mathbb{Z}^{Q_0} \times \mathbb{Z}^{Q_0} \to \mathbb{Z}$ Euler form of Q
- ▶ $d \in \mathbb{N}^{Q_0}$ dimension vector

Theorem (Kac)

If $\langle d, d \rangle_Q \leq 1$, then exists family of pairwise non-isomorphic indecomposable representations parametrized by $1 - \langle d, d \rangle_Q$ many continuous parameters.

Families of indecomposable representations

Question

Can we find (in special cases) *explicitly given* families of pairwise non-isomorphic indecomposables parametrized by $1 - \langle d, d \rangle_Q$ *independent* continuous parameters?

Call this a "generic normal form".

Approach

Use torus actions on quiver moduli.

Setup

Fix the following data:

•
$$\theta: \mathbb{Z}^{Q_0} \to \mathbb{Z}$$
 homomorphism such that $\theta(d) = 0$

Assumptions

- 1. Q is acyclic
- 2. *d* is θ -coprime, i.e. $\theta(d') \neq 0$ for all $0 \leq d' \leq d$, unless d' = 0 or d' = d

Setup

Fix complex vector spaces V_i of dimension d_i . Define

$$egin{aligned} & R(Q,d) = igoplus_{a \in Q_1} \operatorname{Hom}(V_{s(a)},V_{t(a)}) \ & G_d = \prod_{i \in Q_0} \operatorname{GL}(V_i) \ & PG_d = G_d/\Delta \end{aligned}$$

where $\Delta = \{(t \operatorname{id}_{V_i})_i \mid t \in \mathbb{C}^{\times}\}$. Action $G_d \curvearrowright R(Q, d)$ by

$$g \cdot M = (g_{t(a)}M_ag_{s(a)}^{-1})_a$$

descends to action $PG_d \curvearrowright R(Q, d)$.

Group action vs. isomorphism

Lemma

Let $M, N \in R(Q, d)$, viewed as representations of Q. Then

 $M \cong N \Leftrightarrow M$ and N lie in same PG_d -orbit.

Definition

Let $Z \subseteq R(Q, d)$ locally closed. Call Z a generic normal form (for indecomposable representations of dimension vector d) if

- all $M \in Z$ are indecomposable
- ▶ $PG_d \cdot M \cap PG_d \cdot N = \emptyset$ for all $M, N \in Z$ with $M \neq N$

$$\blacktriangleright \ Z \cong \mathbb{A}^n \text{ where } n = 1 - \langle d, d \rangle_Q.$$

Semi-stable representations

Definition

Let $M \in R(Q, d)$.

► *M* is θ -semi-stable if $\theta(\dim M') \le 0$ for every subrepresentation $0 \ne M' \subsetneq M$

▶ M is θ -stable if $\theta(\dim M') < 0$ or every subrepresentation $0 \neq M' \subsetneq M$

Remark

If M is θ -stable then M indecomposable

Define

$$R(Q, d)^{ heta-sst} = \{M \in R(Q, d) \mid M ext{ is } heta-semi-stable}\}$$

 $R(Q, d)^{ heta-st} = \{M \in R(Q, d) \mid M ext{ is } heta-stable}\}$

Two *PG_d*-invariant Zariski open subsets.

Quiver moduli

Theorem (King)

There exists PG_d -linearized ample line bundle $L(\theta)$ on R(Q, d) such that for all $M \in R(Q, d)$:

M is θ -(semi-)stable \Leftrightarrow *M* is (semi-)stable w.r.t. $L(\theta)$.

Can therefore define GIT quotients

Definition

- $M^{\theta-\text{sst}}(Q,d) = R(Q,d)^{\theta-\text{sst}} / PG_d$ called θ -semi-stable quiver moduli space
- $M^{\theta-\mathrm{st}}(Q,d) = R(Q,d)^{\theta-\mathrm{st}}/PG_d$ called θ -stable quiver moduli space

Quiver moduli

Recall our assumptions:

- 1. Q acyclic
- 2. d is θ -coprime

Facts

Under our assumptions, $M^{\theta-{
m st}}(Q,d)=M^{\theta-{
m sst}}(Q,d)$ is smooth and projective

An example

Let

$$\begin{array}{l} \mathbf{V} = \mathcal{K}(5) : \bullet \xrightarrow{(5)} \bullet \\ \mathbf{P} = (2,5) \\ \mathbf{P} = (5,-2) \\ \text{Let } A = (A_1, \dots, A_5) \in R(Q,d) = M_{5\times 2}(\mathbb{C})^5. \text{ Then} \\ A \ \theta \text{-sst} \Leftrightarrow A \ \theta \text{-st} \Leftrightarrow \dim \langle A_1 x, \dots, A_5 x \rangle \geq 3 \text{ (all } x \in \mathbb{C}^2 \setminus \{0\}) \text{ and} \\ & \operatorname{im}(A_1) + \ldots + \operatorname{im}(A_5) = \mathbb{C}^5 \end{array}$$

Fact

 $M^{\theta-st}(K(5),(2,5))$ smooth projective variety of dimension 22

Torus action

Let $T = \mathbb{C}^{\times}$.

- Choose weights $w_a \in \mathbb{Z}$ (all $a \in Q_1$)
- Define $T \curvearrowright R(Q, d)$ by $t.M = (t^{w_a}M_a)_a$

Remark

•
$$R(Q,d)^{\theta-st}$$
 is *T*-invariant

► *T*-action and *PG_d*-action commute

Lemma

Obtain action $T \curvearrowright M^{\theta-{\sf st}}(Q,d)$

Fixed points

- Let $M \in R(Q, d)^{\theta-\mathrm{st}}$ such that $[M] \in M^{\theta-\mathrm{st}}(Q, d)^{T}$.
 - ▶ For all $t \in T$ exists unique $g \in PG_d$ such that $t.M = g \cdot M$
 - Gives homomorphism $\rho = \rho_M : T \to PG_d$
 - Choose lift $\dot{\rho}: T \to G_d = \prod_i \operatorname{GL}(V_i)$
 - Induces weight space decompositions V_i = ⊕_{m∈ℤ} V_{i,m} such that

$$M_a(V_{s(a),m}) \subseteq V_{t(a),m+w_a}$$

Lemma

M defines representation \dot{M} of (infinite) quiver Q(w) (where $w=(w_a)_a),$ given by

 $egin{aligned} Q(w)_0 &= Q_0 imes \mathbb{Z} & Q(w)_1 &= Q_1 imes \mathbb{Z} \\ s(a,m) &= (s(a),m) & t(a,m) &= (t(a),m+w_a) \end{aligned}$

Fixed points

Remark

- ▶ Let $C_d = \{\beta \in \mathbb{N}^{Q(w)_0} \mid \sum_m \beta_{i,m} = d_i \text{ (all } i \in Q_0)\}$; then $\underline{\dim} \dot{M} \in C_d$
- For n∈ Z have auto equivalence s_n on Rep_C(Q(w)) defined by s_n(N)_{i,m} = N_{i,m+n} and s_n(N)_{a,m} = N_{a,m+m}
- ▶ Induces action $\mathbb{Z} \curvearrowright \mathbb{N}^{Q(w)_0}$ which leaves C_d invariant
- ▶ For two lifts $\dot{\rho}, \ddot{\rho}$ of ρ , we have $\ddot{M} \cong s_n(\dot{M})$ for a unique $n \in \mathbb{Z}$

Theorem (Weist)

 $M^{\theta-st}(Q,d)^T = \bigsqcup_{[\beta] \in C_d/\mathbb{Z}} F_{\beta}$, a finite disjoint union into connected components with

$$F_{\beta} \cong M^{\theta-\mathsf{st}}(Q(w),\beta)$$

Let

Corollary

•
$$Q = K(5)$$
, $d = (2, 5)$, and $\theta = (5, -2)$

• weights for *T*-action such that $w_1 \gg w_2 \gg \ldots \gg w_5$ List of all $[\beta] \in C_d/\mathbb{Z}$ with $F_\beta \neq \emptyset$:

$$\chi(M^{\theta-{
m st}}(K(5),(2,5)))=380+\chi({
m Bl}_4({\mathbb P}^2))=387$$

Białynicki-Birula decompositions

Let X smooth projective variety with action of $T = \mathbb{C}^{\times}$.

- Let X^T = □_{β∈C} F_β decomposition into connected components
- ▶ Define attractor $X_{\beta} = \operatorname{Att}(F_{\beta}) = \{x \in X \mid \lim_{t \to 0} t.x \in F_{\beta}\}$
- ▶ For $x \in X^T$, obtain $T \frown T_x X$ by derivative of action map
- Gives weight space decomposition $T_X X = \bigoplus_{n \in \mathbb{Z}} (T_X X)_n$.

Theorem (Białynicki-Birula)

- 1. $X_{\beta} \subseteq X$ locally closed, irreducible, and smooth.
- 2. $X = \bigcup_{\beta \in C} X_{\beta}$, a disjoint union.
- 3. $\pi_{\beta}: X_{\beta} \rightarrow F_{\beta}$ is Zariski locally trival fibration
- 4. Att(x) := $\pi_{\beta}^{-1}(x)$ is affine space of dimension $\sum_{n>0} \dim(T_x X)_n$

Tangent space of the moduli space

Let $M \in R(Q, d)^{\theta-st}$ such that $[M] \in M^{\theta-st}(Q, d)^T$. Obtain short exact sequence

and $[x, M] = (x_{t(a)}M_a - M_a x_{s(a)})_a$.

Weight spaces of the tangent space

Lemma

Exist linear actions $T \curvearrowright T_M R(Q,d)^{\theta-st}$ and $T \curvearrowright \mathfrak{g}_d$ such that the maps

$$\mathfrak{g}_d o T_M R(Q,d)^{ heta-\mathsf{st}} o T_{[M]} M^{ heta-\mathsf{st}}(Q,d) o 0$$

are T-equivariant

Lemma

With respect to above actions,

$$(\mathfrak{g}_d)_n = \bigoplus_{i \in Q_0} \bigoplus_{m \in \mathbb{Z}} \operatorname{Hom}(V_{i,m}, V_{i,m-n})$$
$$(T_M R(Q, d)^{\theta - \operatorname{st}})_n = \bigoplus_{a \in Q_1} \bigoplus_{m \in \mathbb{Z}} \operatorname{Hom}(V_{\mathfrak{s}(a),m}, V_{t(a),m+w_a-n})$$

Weight spaces of the tangent space

Theorem (Boos–F.)

For $M \in R(Q, d)^{\theta-st}$ such that $[M] \in M^{\theta-st}(Q, d)^T$

$$(T_{[M]}M^{\theta-\mathrm{st}}(Q,d))_{n} \cong \mathrm{Ext}_{Q(w)}(\dot{M},s_{-n}(\dot{M}))$$
$$\dim(T_{[M]}M^{\theta-\mathrm{st}}(Q,d))_{n} = \delta_{n,0} - \langle \beta, s_{-n}(\beta) \rangle_{Q(w)}$$

where \dot{M} is lift of M to Q(w) and $\beta := \underline{\dim} \dot{M}$.

Twisted filtrations

Let $N \in R(Q, d)$. Assume exist filtrations $\dots \subseteq F_{i,n} \subseteq F_{i,n+1} \subseteq \dots \subseteq V_i$ (with $F_{i,-n} = 0$ and $F_{i,n} = V_i$ for $n \gg 0$) such that $N_a(F_{s(a),n}) \subseteq F_{t(a),n+w_a}$.

Definition

 $F_* = (F_{i,*})_i$ is called a *w*-twisted filtration of *N*.

Remark

If N has w-twisted filtration F_* , then

$$F_{s(a),n}/F_{s(a),n-1} \rightarrow F_{t(a),n+w_a}/F_{t(a),n+w_a-1}$$

define representation of Q(w). Call it $gr^{F_*}(N)$.

Attractors

Proposition

Let $M, N \in R(Q, d)^{\theta-st}$ such that $[M] \in M^{\theta-st}(Q, d)^T$. Then $[N] \in Att([M]) \Leftrightarrow \exists w-twisted filtration F_* of N such that$ $gr^{F_*}(N) \cong M$ as representations of Q

Essentially a reformulation of a result of Kinser and Weist.

Attractors

Let
$$[M] \in M^{\theta - \operatorname{st}}(Q, d)^T$$

Let \dot{M} lift of M to $Q(w)$
 $V_i = \bigoplus_n V_{i,n}$ the corresponding decompositions
Define $F_{i,n} = \bigoplus_{m \le n} V_{i,m}$
Define

$$R_{F_*} := \bigoplus_{k>0} \underbrace{\bigoplus_{a \in Q_1} \bigoplus_{n \in \mathbb{Z}} \mathsf{Hom}(V_{s(a),n}, V_{t(a),n+w_a-k})}_{=:R_{F_*,k}}$$
$$\mathfrak{u}_{F_*} := \bigoplus_{k>0} \underbrace{\bigoplus_{i \in Q_1} \bigoplus_{n \in \mathbb{Z}} \mathsf{Hom}(V_{i,n}, V_{i,n-k})}_{=:\mathfrak{u}_{F_*,k}}$$
$$[\mathfrak{u}_{F_*}, M] := \mathsf{im}\left(\mathfrak{u}_{F_*} \to R_{F_*}, \ x \mapsto [x, M]\right)$$
$$\subseteq R_{F_*} \mathsf{ is } \mathbb{Z}_{>0}\mathsf{-graded subspace}$$

Attractors

Theorem (Boos–F.)

Let
$$[M] \in M^{ heta-\mathsf{st}}(Q,d)^{\mathsf{T}}$$
 , let

- \dot{M} lift of M to Q(w)
- ► *F*_{*} the corresponding filtration.

Choose $\mathbb{Z}_{>0}\text{-graded}$ vector space complement R' of $[\mathfrak{u}_{F_*},M]$ inside $R_{F_*}.$ Then

$$R' \longrightarrow R(Q, d)^{\theta-\operatorname{st}} \xrightarrow{\pi} M^{\theta-\operatorname{st}}(Q, d)$$

 $N \longmapsto M + N$

is well-defined and induces isomorphism $R' \xrightarrow{\cong} Att([M])$.

Generic normal form

Corollary

Suppose that there exists $\beta \in C_d$ such that

1.
$$M^{ heta-\mathsf{st}}(Q(w),eta)=\{[M]\}$$
 and

2. dim Att([M]) = dim $M^{\theta-st}(Q, d)$.

Let R' as in Thm. Then the (closed) subset

 $\{M\} + R' \subseteq R(Q, d)$

is a generic normal form (for $M^{ heta-\mathsf{st}}(Q,d))$

Remark

These conditions can be checked:

1. holds iff
$$\langle \beta, \beta \rangle_{Q(w)} = 1$$
 and $R(Q(w), \beta)^{\theta-st} \neq \emptyset$

2. holds iff
$$-\sum_{m>0} \langle \beta, s_{-m}(\beta) \rangle_{Q(w)} = 1 - \langle d, d \rangle_Q$$

iff $\langle \beta, s_{-m}(\beta) \rangle_{Q(w)} = 0$ for all $m < 0$.

Let

C

•
$$Q = K(5)$$
, $d = (2, 5)$, and $\theta = (5, -2)$
• $w_1 = 10,000$, $w_2 = 1,000$, $w_3 = 100$, $w_4 = 10$, and $w_5 = 1$
conditions 1. and 2. of previous corollary hold for

Let $M \in M^{\theta-st}(Q(w),\beta)$. Then $M = \left(\left(\begin{array}{c} \end{array}
ight), \left(\begin{array}{c} \end{array}
ight), \left(\begin{array}{c} \end{array}
ight), \left(\begin{array}{c} 1
ight), \left(\begin{array}{c} 1
ight), \left(\begin{array}{c} 1
ight)
ight), \left(\begin{array}{c} 1
ight)
ight)$ $R_{F_*} = \left(\begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix} \right)$

$$\mathfrak{u}_{F_*} = \left(\begin{pmatrix} b \\ \end{pmatrix}, \begin{pmatrix} a_{12} & a_{13} & a_{14} & a_{15} \\ a_{23} & a_{24} & a_{25} \\ & & a_{34} & a_{35} \\ & & & & a_{45} \end{pmatrix} \right)$$
$$[\mathfrak{u}_{F_*}, M] = \left((0), (0), \begin{pmatrix} a_{14} & a_{15} \\ a_{24} & a_{25} \\ a_{34} & a_{35} \\ a_{45} - b \end{pmatrix}, \begin{pmatrix} a_{12} & a_{14} \\ a_{24} - b \\ a_{34} \\ & & \end{pmatrix}, \begin{pmatrix} a_{13} - b \\ a_{23} \\ & & \\ & & \end{pmatrix} \right)$$

Corollary

A generic normal form for $M^{\theta-st}(K(5),(2,5))$ is given by

$$\{M\} + R' = \left(\begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}, \begin{pmatrix} & & \\ 1 \\ & & \\ 1 \end{pmatrix}, \begin{pmatrix} & * \\ 1 \\ & * \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ & & \\ 1 \\ & & \\ 1 \end{pmatrix} \right)$$

Thank you!