FD seminar - Bonn

Attractors of torus actions on quiver moduli

H. Franzen
Ruhr-Universität Bochum

March 11, 2021

Families of indecomposable representations

Let

- Q connected quiver
- $\left\langle_{-},\right\rangle_{Q}: \mathbb{Z}^{Q_{0}} \times \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}$ Euler form of Q
- $d \in \mathbb{N}^{Q_{0}}$ dimension vector

Theorem (Kac)

If $\langle d, d\rangle_{Q} \leq 1$, then exists family of pairwise non-isomorphic indecomposable representations parametrized by $1-\langle d, d\rangle_{Q}$ many continuous parameters.

Families of indecomposable representations

Question

Can we find (in special cases) explicitly given families of pairwise non-isomorphic indecomposables parametrized by $1-\langle d, d\rangle_{Q}$ independent continuous parameters?

Call this a "generic normal form".

Approach

Use torus actions on quiver moduli.

Setup

Fix the following data:

- Q connected quiver; $Q_{0}=\{$ vertices of $Q\}$ and $Q_{1}=\{$ arrows of $Q\}$
- $d \in \mathbb{N}^{Q_{0}}$ dimension vector
- $\theta: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{Z}$ homomorphism such that $\theta(d)=0$

Assumptions

1. Q is acyclic
2. d is θ-coprime, i.e. $\theta\left(d^{\prime}\right) \neq 0$ for all $0 \leq d^{\prime} \leq d$, unless $d^{\prime}=0$ or $d^{\prime}=d$

Setup

Fix complex vector spaces V_{i} of dimension d_{i}. Define

$$
\begin{aligned}
R(Q, d) & =\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(V_{s(a)}, V_{t(a)}\right) \\
G_{d} & =\prod_{i \in Q_{0}} \mathrm{GL}\left(V_{i}\right) \\
P G_{d} & =G_{d} / \Delta
\end{aligned}
$$

where $\Delta=\left\{\left(t \mathrm{id} v_{i}\right)_{i} \mid t \in \mathbb{C}^{\times}\right\}$. Action $G_{d} \curvearrowright R(Q, d)$ by

$$
g \cdot M=\left(g_{t(a)} M_{a} g_{s(a)}^{-1}\right)_{a}
$$

descends to action $P G_{d} \curvearrowright R(Q, d)$.

Group action vs. isomorphism

Lemma
Let $M, N \in R(Q, d)$, viewed as representations of Q. Then $M \cong N \Leftrightarrow M$ and N lie in same $P G_{d}$-orbit.

Generic normal form

Definition

Let $Z \subseteq R(Q, d)$ locally closed. Call Z a generic normal form (for indecomposable representations of dimension vector d) if

- all $M \in Z$ are indecomposable
- $P G_{d} \cdot M \cap P G_{d} \cdot N=\emptyset$ for all $M, N \in Z$ with $M \neq N$
- $Z \cong \mathbb{A}^{n}$ where $n=1-\langle d, d\rangle_{Q}$.

Semi-stable representations

Definition

Let $M \in R(Q, d)$.

- M is θ-semi-stable if $\theta\left(\underset{\operatorname{dim}}{ } M^{\prime}\right) \leq 0$ for every subrepresentation $0 \neq M^{\prime} \varsubsetneqq M$
- M is θ-stable if $\theta\left(\operatorname{dim} M^{\prime}\right)<0$ or every subrepresentation $0 \neq M^{\prime} \varsubsetneqq M$

Remark

If M is θ-stable then M indecomposable
Define

$$
\begin{aligned}
R(Q, d)^{\theta-\text { sst }} & =\{M \in R(Q, d) \mid M \text { is } \theta \text {-semi-stable }\} \\
R(Q, d)^{\theta-\text { st }} & =\{M \in R(Q, d) \mid M \text { is } \theta \text {-stable }\}
\end{aligned}
$$

Two $P G_{d}$-invariant Zariski open subsets.

Quiver moduli

Theorem (King)

There exists $P G_{d}$-linearized ample line bundle $L(\theta)$ on $R(Q, d)$ such that for all $M \in R(Q, d)$:
M is θ-(semi-)stable $\Leftrightarrow M$ is (semi-)stable w.r.t. $L(\theta)$.

Can therefore define GIT quotients

Definition

- $M^{\theta-\text { sst }}(Q, d)=R(Q, d)^{\theta-\text { sst }} / / P G_{d}$ called θ-semi-stable quiver moduli space
- $M^{\theta-\text { st }}(Q, d)=R(Q, d)^{\theta-\text { st }} / P G_{d}$ called θ-stable quiver moduli space

Quiver moduli

Facts

- $R(Q, d)^{\theta-\text { st }} \xrightarrow{\pi} M^{\theta-\text { st }}(Q, d)$ is a principal $P G_{d}$-bundle
- $P G_{d} \curvearrowright R(Q, d)^{\theta-\text { st }}$ freely
- points of $M^{\theta-\text { st }}(Q, d)=$ isoclasses of θ-stable representations of dim d
- If $R(Q, d)^{\theta-\text { st }} \neq \emptyset$ then $\operatorname{dim} M^{\theta-\text { st }}(Q, d)=1-\langle d, d\rangle_{Q}$

Recall our assumptions:

1. Q acyclic
2. d is θ-coprime

Facts

Under our assumptions, $M^{\theta-\text { st }}(Q, d)=M^{\theta-\text { sst }}(Q, d)$ is smooth and projective

An example

Let

- $Q=K(5): \bullet \xrightarrow{(5)}$ •
- $d=(2,5)$
- $\theta=(5,-2)$

Let $A=\left(A_{1}, \ldots, A_{5}\right) \in R(Q, d)=M_{5 \times 2}(\mathbb{C})^{5}$. Then
$A \theta$-sst $\Leftrightarrow A \theta$-st $\Leftrightarrow \operatorname{dim}\left\langle A_{1} x, \ldots, A_{5} x\right\rangle \geq 3$ (all $\left.x \in \mathbb{C}^{2} \backslash\{0\}\right)$ and $\operatorname{im}\left(A_{1}\right)+\ldots+\operatorname{im}\left(A_{5}\right)=\mathbb{C}^{5}$

Fact

$M^{\theta-s t}(K(5),(2,5))$ smooth projective variety of dimension 22

Torus action

Let $T=\mathbb{C}^{\times}$.

- Choose weights $w_{a} \in \mathbb{Z}$ (all $\left.a \in Q_{1}\right)$
- Define $T \curvearrowright R(Q, d)$ by $t . M=\left(t^{w_{a}} M_{a}\right)_{a}$

Remark

- $R(Q, d)^{\theta-\text { st }}$ is T-invariant
- T-action and $P G_{d}$-action commute

Lemma
Obtain action $T \curvearrowright M^{\theta-s t}(Q, d)$

Fixed points

Let $M \in R(Q, d)^{\theta-\text { st }}$ such that $[M] \in M^{\theta-s t}(Q, d)^{T}$.

- For all $t \in T$ exists unique $g \in P G_{d}$ such that $t . M=g \cdot M$
- Gives homomorphism $\rho=\rho_{M}: T \rightarrow P G_{d}$
- Choose lift $\dot{\rho}: T \rightarrow G_{d}=\prod_{i} G L\left(V_{i}\right)$
- Induces weight space decompositions $V_{i}=\bigoplus_{m \in \mathbb{Z}} V_{i, m}$ such that

$$
M_{a}\left(V_{s(a), m}\right) \subseteq V_{t(a), m+w_{a}}
$$

Lemma

M defines representation \dot{M} of (infinite) quiver $Q(w)$ (where $\left.w=\left(w_{a}\right)_{a}\right)$, given by

$$
\left.\left.\begin{array}{rlrl}
Q(w)_{0} & =Q_{0} \times \mathbb{Z} & Q(w)_{1} & =Q_{1} \times \mathbb{Z} \\
s(a, m) & =(s(a), m) & & t(a, m)
\end{array}\right)=\left(t(a), m+w_{a}\right)\right) ~ l
$$

Fixed points

Remark

- Let $C_{d}=\left\{\beta \in \mathbb{N}^{Q(w)_{0}} \mid \sum_{m} \beta_{i, m}=d_{i}\left(\right.\right.$ all $\left.\left.i \in Q_{0}\right)\right\}$; then $\underline{\operatorname{dim}} \dot{M} \in C_{d}$
- For $n \in \mathbb{Z}$ have auto equivalence s_{n} on $\operatorname{Rep}_{\mathbb{C}}(Q(w))$ defined by $s_{n}(N)_{i, m}=N_{i, m+n}$ and $s_{n}(N)_{a, m}=N_{a, m+m}$
- Induces action $\mathbb{Z} \curvearrowright \mathbb{N}^{Q(w)_{0}}$ which leaves C_{d} invariant
- For two lifts $\dot{\rho}, \ddot{\rho}$ of ρ, we have $\ddot{M} \cong s_{n}(\dot{M})$ for a unique $n \in \mathbb{Z}$

Theorem (Weist)

$M^{\theta-\text { st }}(Q, d)^{T}=\bigsqcup_{[\beta] \in C_{d} / \mathbb{Z}} F_{\beta}$, a finite disjoint union into connected components with

$$
F_{\beta} \cong M^{\theta-\text { st }}(Q(w), \beta)
$$

An example (continued)

Let

- $Q=K(5), d=(2,5)$, and $\theta=(5,-2)$
- weights for T-action such that $w_{1} \gg w_{2} \gg \ldots \gg w_{5}$ List of all $[\beta] \in C_{d} / \mathbb{Z}$ with $F_{\beta} \neq \emptyset$:

type	$1 \xrightarrow{\substack{1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1}} \begin{aligned} & 1 \\ & L_{2} \end{aligned}$		$2 \stackrel{\sim}{\square} \underset{\sim}{\square}$
$\# \beta$'s of this type	360	20	1
$M^{\theta-s t}(Q(w), \beta)$	\{pt \}	\{pt	$\mathrm{Bl}_{4}\left(\mathbb{P}^{2}\right)$

Corollary

$\chi\left(M^{\theta-\text { st }}(K(5),(2,5))\right)=380+\chi\left(\mathrm{Bl}_{4}\left(\mathbb{P}^{2}\right)\right)=387$

Białynicki-Birula decompositions

Let X smooth projective variety with action of $T=\mathbb{C}^{\times}$.

- Let $X^{T}=\bigsqcup_{\beta \in C} F_{\beta}$ decomposition into connected components
- Define attractor $X_{\beta}=\operatorname{Att}\left(F_{\beta}\right)=\left\{x \in X \mid \lim _{t \rightarrow 0} t . x \in F_{\beta}\right\}$
- For $x \in X^{T}$, obtain $T \curvearrowright T_{x} X$ by derivative of action map
- Gives weight space decomposition $T_{x} X=\bigoplus_{n \in \mathbb{Z}}\left(T_{x} X\right)_{n}$.

Theorem (Białynicki-Birula)

1. $X_{\beta} \subseteq X$ locally closed, irreducible, and smooth.
2. $X=\bigcup_{\beta \in C} X_{\beta}$, a disjoint union.
3. $\pi_{\beta}: X_{\beta} \rightarrow F_{\beta}$ is Zariski locally trival fibration
4. $\operatorname{Att}(x):=\pi_{\beta}^{-1}(x)$ is affine space of dimension $\sum_{n>0} \operatorname{dim}\left(T_{x} X\right)_{n}$

Tangent space of the moduli space

Let $M \in R(Q, d)^{\theta-\text { st }}$ such that $[M] \in M^{\theta-\text { st }}(Q, d)^{T}$. Obtain short exact sequence

$$
\begin{aligned}
& \text { and }[x, M]=\left(x_{t(a)} M_{a}-M_{a} x_{s(a)}\right)_{a} .
\end{aligned}
$$

Weight spaces of the tangent space

Lemma

Exist linear actions $T \curvearrowright T_{M} R(Q, d)^{\theta-\text { st }}$ and $T \curvearrowright \mathfrak{g}_{d}$ such that the maps

$$
\mathfrak{g}_{d} \rightarrow T_{M} R(Q, d)^{\theta-s t} \rightarrow T_{[M]} M^{\theta-s t}(Q, d) \rightarrow 0
$$

are T-equivariant

Lemma

With respect to above actions,

$$
\begin{aligned}
\left(\mathfrak{g}_{d}\right)_{n} & =\bigoplus_{i \in Q_{0}} \bigoplus_{m \in \mathbb{Z}} \operatorname{Hom}\left(V_{i, m}, V_{i, m-n}\right) \\
\left(T_{M} R(Q, d)^{\theta-s t}\right)_{n} & =\bigoplus_{a \in Q_{1}} \bigoplus_{m \in \mathbb{Z}} \operatorname{Hom}\left(V_{s(a), m}, V_{t(a), m+w_{a}-n}\right)
\end{aligned}
$$

Weight spaces of the tangent space

Theorem (Boos-F.)
For $M \in R(Q, d)^{\theta \text {-st }}$ such that $[M] \in M^{\theta-\text { st }}(Q, d)^{T}$

$$
\begin{aligned}
\left(T_{[M]} M^{\theta-\mathrm{st}}(Q, d)\right)_{n} & \cong \operatorname{Ext}_{Q(w)}\left(\dot{M}, s_{-n}(\dot{M})\right) \\
\operatorname{dim}\left(T_{[M]} M^{\theta-\mathrm{st}}(Q, d)\right)_{n} & =\delta_{n, 0}-\left\langle\beta, s_{-n}(\beta)\right\rangle_{Q(w)}
\end{aligned}
$$

where \dot{M} is lift of M to $Q(w)$ and $\beta:=\underline{\operatorname{dim}} \dot{M}$.

Twisted filtrations

Let $N \in R(Q, d)$. Assume exist filtrations

$$
\ldots \subseteq F_{i, n} \subseteq F_{i, n+1} \subseteq \ldots \subseteq V_{i}
$$

(with $F_{i,-n}=0$ and $F_{i, n}=V_{i}$ for $n \gg 0$) such that $N_{a}\left(F_{s(a), n}\right) \subseteq F_{t(a), n+w_{a}}$.

Definition

$F_{*}=\left(F_{i, *}\right)_{i}$ is called a w-twisted filtration of N.

Remark

If N has w-twisted filtration F_{*}, then

$$
F_{s(a), n} / F_{s(a), n-1} \rightarrow F_{t(a), n+w_{a}} / F_{t(a), n+w_{a}-1}
$$

define representation of $Q(w)$. Call it $\mathrm{gr}^{F_{*}}(N)$.

Attractors

Proposition

Let $M, N \in R(Q, d)^{\theta \text {-st }}$ such that $[M] \in M^{\theta \text {-st }}(Q, d)^{T}$. Then

$$
[N] \in \operatorname{Att}([M]) \Leftrightarrow \exists \text { w-twisted filtration } F_{*} \text { of } N \text { such that }
$$ $\operatorname{gr}^{F_{*}}(N) \cong M$ as representations of Q

Essentially a reformulation of a result of Kinser and Weist.

Attractors

Let $[M] \in M^{\theta-\text { st }}(Q, d)^{T}$

- Let \dot{M} lift of M to $Q(w)$
- $V_{i}=\bigoplus_{n} V_{i, n}$ the corresponding decompositions
- Define $F_{i, n}=\bigoplus_{m \leq n} V_{i, m}$

Define

$$
\begin{aligned}
R_{F_{*}} & :=\bigoplus_{k>0} \underbrace{\bigoplus_{a \in Q_{1}} \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}\left(V_{s(a), n}, V_{t(a), n+w_{a}-k}\right)}_{=: R_{F_{*}, k}} \\
\mathfrak{u}_{F_{*}} & :=\bigoplus_{k>0} \underbrace{\bigoplus_{i \in Q_{1}} \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}\left(V_{i, n}, V_{i, n-k}\right)}_{=: \underbrace{}_{F_{*}, k}} \\
{\left[\mathfrak{u}_{F_{*}}, M\right] } & \left.:=\operatorname{im}\left(\mathfrak{u}_{F_{*}} \rightarrow R_{F_{*}, x \mapsto}, x \mapsto, M\right]\right) \\
& \subseteq R_{F_{*}} \text { is } \mathbb{Z}_{>0} \text {-graded subspace }
\end{aligned}
$$

Attractors

Theorem (Boos-F.)
Let $[M] \in M^{\theta-s t}(Q, d)^{T}$, let

- \dot{M} lift of M to $Q(w)$
- F_{*} the corresponding filtration.

Choose $\mathbb{Z}_{>0}$-graded vector space complement R^{\prime} of $\left[\mathfrak{u}_{F_{*}}, M\right]$ inside $R_{F_{*}}$. Then

$$
\begin{aligned}
& R^{\prime} \longrightarrow R(Q, d)^{\theta-s t} \xrightarrow{\pi} M^{\theta-s t}(Q, d) \\
& N \longmapsto M+N
\end{aligned}
$$

is well-defined and induces isomorphism $R^{\prime} \stackrel{\cong}{\leftrightarrows} \operatorname{Att}([M])$.

Generic normal form

Corollary

Suppose that there exists $\beta \in C_{d}$ such that

1. $M^{\theta-\text { st }}(Q(w), \beta)=\{[M]\}$ and
2. $\operatorname{dim} \operatorname{Att}([M])=\operatorname{dim} M^{\theta-s t}(Q, d)$.

Let R^{\prime} as in Thm. Then the (closed) subset

$$
\{M\}+R^{\prime} \subseteq R(Q, d)
$$

is a generic normal form (for $M^{\theta-\text { st }}(Q, d)$)

Remark

These conditions can be checked:

1. holds iff $\langle\beta, \beta\rangle_{Q(w)}=1$ and $R(Q(w), \beta)^{\theta-\text { st }} \neq \emptyset$
2. holds iff $-\sum_{m>0}\left\langle\beta, s_{-m}(\beta)\right\rangle_{Q(w)}=1-\langle d, d\rangle_{Q}$ iff $\left\langle\beta, s_{-m}(\beta)\right\rangle_{Q(w)}=0$ for all $m<0$.

An example (continued)

Let

- $Q=K(5), d=(2,5)$, and $\theta=(5,-2)$
- $w_{1}=10,000, w_{2}=1,000, w_{3}=100, w_{4}=10$, and $w_{5}=1$

Conditions 1. and 2. of previous corollary hold for

An example (continued)

Let $M \in M^{\theta-\text { st }}(Q(w), \beta)$. Then

$$
\begin{aligned}
& M=\left(\left(\begin{array}{l}
\\
\end{array}\right),\left(\begin{array}{ll}
\\
& \\
1 & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& \\
& 1 \\
& \\
&
\end{array}\right)\right) \\
& R_{F_{*}}=\left(\left(\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right),\left(\begin{array}{cc}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right),\left(\begin{array}{cc}
* & * \\
* & * \\
* & * \\
& *
\end{array}\right),\left(\begin{array}{ll}
* & * \\
& * \\
* \\
&
\end{array}\right),\binom{*}{*}\right.
\end{aligned}
$$

An example (continued)

$$
\begin{aligned}
& \mathfrak{u}_{F_{*}}=\left(\left(\begin{array}{l}
b \\
\end{array}\right),\left(\begin{array}{llll}
a_{12} & a_{13} & a_{14} & a_{15} \\
& a_{23} & a_{24} & a_{25} \\
& & a_{34} & a_{35} \\
& & & a_{45}
\end{array}\right)\right) \\
&\left.\mathfrak{u}_{F_{*}}, M\right]=(0),(0),\left(\begin{array}{cc}
a_{14} & a_{15} \\
a_{24} & a_{25} \\
a_{34} & a_{35} \\
& a_{45}-b
\end{array}\right),\left(\begin{array}{cc}
a_{12} & a_{14} \\
& a_{24}-b \\
& a_{34}
\end{array}\right),\left(\begin{array}{c}
a_{13}-b \\
a_{23} \\
\end{array}\right.
\end{aligned}
$$

Corollary

A generic normal form for $M^{\theta-\text { st }}(K(5),(2,5))$ is given by

$$
\{M\}+R^{\prime}=\left(\left(\begin{array}{ll}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right),\left(\begin{array}{ll}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{array}\right),\left(\begin{array}{ll}
& \\
1 & \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& * \\
& 1
\end{array}\right),\left(\begin{array}{ll}
1 & \\
& \\
& 1 \\
&
\end{array}\right)\right)
$$

Thank you!

