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Overview

▸ Cluster algebras [FZ]

▸ Cluster categories [CCS][BMRRT][A]
▸ Higher Auslander correspondence [I]
▸ n-angulated categories [GKO]
▸ n-abelian categories [Ja]
▸ n-torsion classes and n-t-structures [Jø]
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Higher homological algebra
▸ n-angulated categories [GKO]
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▸ n-torsion classes and n-t-structures [Jø]

Today: Interplay between higher and classical homological algebra
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●A is a small length abelian category

▸ A full subcategory X ofA is contravariantly finite if for allM ∈ A there exists a right
X -approximation, that is a map f :X →M such that
HomA(X ′, f) : HomA(X ′,X)↠ HomA(X ′,M) for allX ′ ∈ X .

▸ A full subcategory X ofA is covariantly finite if for allM ∈ A there exists a exists a
left X -approximation, that is a map f :M →X such that
HomA(f,X ′) : HomA(M,X ′)↪ HomA(X,X ′) for allX ′ ∈ X .

▸ A full subcategory X ofA is functorially finite if X is covariantly and contravariantly
finite.
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● Let X be a full subcategory ofA.

▸ Fac(X ) = {Y ∈ A : ∃ exact sequenceX → Y → 0, for someX ∈ X}
▸ Sub(X ) = {Y ∈ A : ∃ exact sequence 0→ Y →X, for someX ∈ X}

Remark
In classical homological algebra results are true up to isomorphism.
In higher homological algebra the results are true up to homotopy.
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Definition

Let A be an abelian category. A functorially finite generating-cogenerating
subcategoryM of A is n-cluster tilting if

M = {X ∈ A : ExtiA(X,M) = 0 for all M ∈M and all 1 ≤ i ≤ n − 1}
= {Y ∈ A : ExtiA(M,Y ) = 0 for all M ∈M and all 1 ≤ i ≤ n − 1}.

H. Treffinger On higher torsion classes 7/32



n-cluster tilting subcategories and n-abelian categories

Theorem (Jasso)
Let A be an abelian category having an n-cluster tilting subcategoryM. ThenM
is an n-abelian category.

Theorem (Kvamme, Ebrahimi−Nasr-Isfahani)
LetM be a small n-abelian category. Then there exists an abelian category A and
a fully faithful functor F :M→ A such that the essential image F (M) of F is an
n-cluster tilting subcategory of A.
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Theorem (Kvamme, Ebrahimi−Nasr-Isfahani)
LetM be a small n-abelian category. Then there exists an abelian category A and
a fully faithful functor F :M→ A such that the essential image F (M) of F is an
n-cluster tilting subcategory of A.

From now on we assume thatM is an n-cluster tilting subcategory ofA.
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Torsion pairs

Definition (Dickson)

▸ For every module M in A there exists a short exact sequence

0→ tM
ιMÐ→M

πMÐÐ→ fM → 0

where tM ∈ T and fM ∈ F .
▸ HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

H. Treffinger On higher torsion classes 9/32



Torsion pairs

Definition (Dickson)

Let A be an abelian category. Then the pair (T ,F) of full subcategories of A is a
torsion pair if the following conditions are satisfied:

▸ For every module M in A there exists a short exact sequence

0→ tM
ιMÐ→M

πMÐÐ→ fM → 0

where tM ∈ T and fM ∈ F .
▸ HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

H. Treffinger On higher torsion classes 9/32



Torsion pairs

Definition (Dickson)

Let A be an abelian category. Then the pair (T ,F) of full subcategories of A is a
torsion pair if the following conditions are satisfied:
▸ For every module M in A there exists a short exact sequence

0→ tM
ιMÐ→M

πMÐÐ→ fM → 0

where tM ∈ T and fM ∈ F .

▸ HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

H. Treffinger On higher torsion classes 9/32



Torsion pairs

Definition (Dickson)

Let A be an abelian category. Then the pair (T ,F) of full subcategories of A is a
torsion pair if the following conditions are satisfied:
▸ For every module M in A there exists a short exact sequence

0→ tM
ιMÐ→M

πMÐÐ→ fM → 0

where tM ∈ T and fM ∈ F .
▸ HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

H. Treffinger On higher torsion classes 9/32



Torsion pairs

Definition (Dickson)

Let A be an abelian category. Then the pair (T ,F) of full subcategories of A is a
torsion pair if the following conditions are satisfied:
▸ For every module M in A there exists a short exact sequence

0→ tM
ιMÐ→M

πMÐÐ→ fM → 0

where tM ∈ T and fM ∈ F .
▸ HomA(X,Y ) = 0 for all X ∈ T and Y ∈ F .

If (T ,F) is a torsion pair we say that T is a torsion class and that F is a torsion
free class.
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Torsion classes revisited

Definition

Let A be an abelian category. A full subcategory T of A is an torsion class in A if
for every M ∈ A there exists a short exact sequence

0Ð→ tM Ð→M Ð→ fM Ð→ 0,

where tM is an object of T and the sequence

0Ð→ HomA(T, fM)Ð→ 0

is exact, for all objects T in T .
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n-torsion classes

Definition (Jørgensen)

LetM be an n-abelian category. A full subcategory U ofM is an n-torsion class if
for every M ∈M there exists an n-exact sequence

0Ð→ UM Ð→M Ð→ V 1 v1Ð→ ⋯ vn−1ÐÐ→ V n Ð→ 0,

where UM is an object of U and the sequence

0Ð→ HomM(U,V 1)Ð→ HomM(U,V 2)Ð→ ⋯Ð→ HomM(U,V n)Ð→ 0

is exact, for all objects U in U .
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is exact, for all objects U in U . In this case UM is called the n-torsion subobject of
M with respect to U .

With this definition there is no n-torsion free class associated to an n-torsion class.
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Classical torsion classes in disguise

Question: What is the relation between the torsion classes ofA and the n-torsion classes
ofM?

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class T in A is of the form T (U) for some n-torsion class U inM if and
only if the following hold:

1. tM ∈ U for all M ∈M where t is the torsion functor associated to the torsion
class T ;

2. T is the minimal torsion class in A containing {tM :M ∈M};
3. Extn−1A (X,Y ) = 0, for all X ∈ {tM :M ∈M} and Y ∈ {fM ′ :M ′ ∈M}.
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In this case U = T ∩M = {tM :M ∈M}.
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The poset of n-torsion classes

● tors(A) := {T : T is a torsion class ofA}

Corollary (Asadollahi-Jørgensen-Schroll-T.)

LetM be the an n-cluster tilting subcategory of A. Then the map
T (−) : n-tors(M)→ tors(A) is a poset monomorphism.
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Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.

▸ Definition based on short exact sequences.
▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.

◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:

▸ Definition based on short exact sequences.
▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.

◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:
▸ Definition based on short exact sequences.

▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.

◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:
▸ Definition based on short exact sequences.
Not clear how to define them using n-exact sequences.

▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.

◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:
▸ Definition based on short exact sequences.
Not clear how to define them using n-exact sequences.

▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.

◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:
▸ Definition based on short exact sequences.
Not clear how to define them using n-exact sequences.

▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.
◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Towards stability conditions in higher homological algebra

● Aim: Obtain a notion of stability conditions for n-abelian categories.
● Stability conditions in abelian categories [Rudakov, Bridgeland]:
▸ Definition based on short exact sequences.
Not clear how to define them using n-exact sequences.

▸ Stability conditions induce Harder-Narasimhan filtrations for every object in the
category.
◇ Slicings [Bridgeland].

Theorem (T.)
Let A be an abelian length category. Then every chain of torsion classes η induces
a slicing Pη in A. Moreover every slicing in A arises this way.

H. Treffinger On higher torsion classes 19/32



Harder-Narasimhan filtrations in abelian categories

Definition (T.)

A chain of torsion classes η in an abelian category A is a set of torsion classes

η := {Ts : s ∈ [0,1], T0 = A,T1 = {0} and Ts ⊆ Tr if r ≤ s}.
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Harder-Narasimhan filtrations in abelian categories

Theorem (T.)
Let A be an abelian category, η a chain of torsion classes in A and Pη be the
slicing induced by η. Then every object M ∈ A admits a Harder-Narasimhan
filtration with respect to η.

1. 0 =M0 and Mt =M ;
2. there exists rk ∈ [0,1] such that Mk/Mk−1 ∈ Prk for all 1 ≤ k ≤ t;
3. r1 > r2 > ⋅ ⋅ ⋅ > rt.
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Moreover this filtration is unique up to isomorphism.
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Harder-Narasimhan filtrations in n-abelian categories

Definition (Asadollahi-Jørgensen-Schroll-T.)

A chain of n-torsion classes δ in an n-abelian categoryM is a set of n-torsion
classes

δ := {Us : s ∈ [0,1], U0 =M, U1 = {0} and Us ⊆ Ur if r ≤ s}.
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Harder-Narasimhan filtrations in n-abelian categories

Theorem (Asadollahi-Jørgensen-Schroll-T.)

LetM be an abelian length category, δ a chain of n-torsion classes inM and Qδ
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Compatibility of Harder-Narasimhan filtrations

● T (−) : n-tors(M)→ tors(A)

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let δ be a chain of n-torsion classes inM ⊂ A and M ∈M. Then the
Harder-Narasimhan filtration of M induced by δ is isomorphic to the
Harder-Narasimhan filtration of M induced by T (δ).
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●We say thatM ∈ X ⊂ A is Extn-projective in X if ExtnM(M,X) = 0 for allX ∈ X .
● An objectM ∈M is τn-rigid if HomA(M,τnM) = 0.
● LetM ∈M and P be a projectiveA-module. We say that the pair (M,P ) is τn-rigid if
M is τn-rigid and HomA(P,M) = 0.
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Extn-projective modules in n-torsion classes

Theorem (Auslander-Smalø)
Let T be a torsion class in modA and let M ∈ T . Then M is Ext-projective in T if
and only if HomA(T, τM) = 0 for all T ∈ T . In particular M is τ -rigid.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U be an n-torsion class inM and let M ∈ U . Then M is Extn-projective in U if
and only if HomA(U, τnM) = 0 for all U ∈ U . In particular M is τn-rigid.
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Generating functorially finite n-torsion classes

● From now on U is a functorially finite n-torsion class ofM.

Proposition (Auslander-Smalø)

Let T be a functorially finite torsion class in modA and let TA ∈ T be the minimal
left T -approximation of A. Then TA is τ -rigid and T = FacTA.

Proposition (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U be a functorially finite n-torsion class ofM and let U0
A be the minimal left

U-approximation of A. Then U0
A is τn-rigid and U = FacU0

A ∩M.
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Not every τn-rigid module generates an n-torsion class.
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● Let U be a functorially finite n-torsion class inM ⊂modA.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U be a functorially finite n-torsion class inM.
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Let U be a functorially finite n-torsion class inM. Then UA is an Extn-projective
object of U . Moreover, if U ′ ∈ U is an Extn-projective object, then addU ′ ⊂ addUA.
In particular U i

A is an Extn-projective object in U for all 0 ≤ i ≤ n.
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● Let U and UA as above. We define PU to be the minimal add-generator of

PU = {P : P is projective and HomA(P,U) = 0 with U ∈ U}
= {P : P is projective and HomA(P,UA) = 0} .

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U be a functorially finite n-torsion class ofM ⊂modA. Then (UA, PU ) is a
τn-rigid pair and ∣UA∣+ ∣PU ∣ = ∣A∣.
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Let U be a functorially finite n-torsion class ofM ⊂modA. Then (UA, PU ) is a
τn-rigid pair and ∣UA∣+ ∣PU ∣ = ∣A∣.

● Remark: Martinez-Mendoza have similar results studying τn-rigid modules inmodA,
regardless of the existence of the n-cluster tilting subcategoryM ⊂modA.
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From τ-tilting theory to τn-tilting theory

Theorem (Adachi-Iyama-Reiten)

A torsion class T is functorially finite if and only if there exists a τ -tilting pair
(T,P ) such that T = FacT .

Lemma (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U = T ∩M be an n-torsion class ofM. If T is functorially finite then U is also
functorially finite.
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From τ-tilting theory to τn-tilting theory

● Let U be an n-torsion class such that U =M∩FacT for some τ -tilting pair (T,P ) and
consider theM-coresolution of T .

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let U be an n-torsion class such that U =M ∩FacT for some τ -tilting pair (T,P ).
Then the pair (UT , P ) is a τn-rigid pair such that addUT = addUA and
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Thank you very much! ,
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