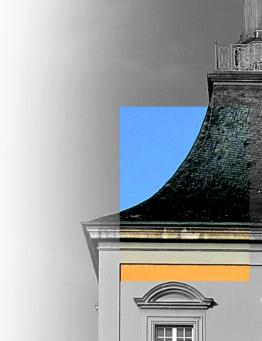


On higher torsion classes

Hipolito Treffinger

Universität Bonn

February 18, 2021



On higher torsion classes

jt. J. Asadollahi, P. Jørgenesen and S. Schroll. https://arxiv.org/abs/2101.01402

On higher torsion classes

jt. J. Asadollahi, P. Jørgenesen and S. Schroll. https://arxiv.org/abs/2101.01402

TBD

jt. J. August, J. Haugland, K. Jacobsen, S. Kvamme and Y. Palu. In preparation.

Plan of the talk

Introduction

Overview Abelian and *n*-abelian categories Torsion and *n*-torsion classes

From n-torsion classes to torsion classes

Classical torsion classes in disguise The poset of n-torsion classes Harder-Narasimhan filtrations in n-abelian categories

Functorially finite *n*-torsion classes

Generating functorially finite *n*-torsion classes From τ -tilting theory to τ_n -tilting theory

Introduction

Overview Abelian and *n*-abelian categories Torsion and *n*-torsion classes

From *n*-torsion classes to torsion classes

Classical torsion classes in disguise The poset of n-torsion classes Harder-Narasimhan filtrations in n-abelian categories

Functorially finite *n*-torsion classes

Generating functorially finite *n*-torsion classes From τ -tilting theory to τ_n -tilting theory

Cluster algebras [FZ]

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A]

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I]

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I]
 Higher homological algebra

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I]
 Higher homological algebra
- *n*-angulated categories [GKO]

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I]
 Higher homological algebra
- *n*-angulated categories [GKO]
- *n*-abelian categories [Ja]

- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I]
 Higher homological algebra
- *n*-angulated categories [GKO]
- *n*-abelian categories [Ja]
- *n*-torsion classes and *n*-*t*-structures [Jø]

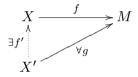
- Cluster algebras [FZ]
- Cluster categories [CCS][BMRRT][A] *n*-cluster tilting subcategories
- Higher Auslander correspondence [I] Higher homological algebra
- *n*-angulated categories [GKO]
- *n*-abelian categories [Ja]
- *n*-torsion classes and *n*-*t*-structures [Jø]

Today: Interplay between higher and classical homological algebra

ullet \mathcal{A} is a small length abelian category

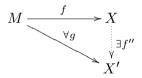
- ullet $\mathcal A$ is a small length abelian category
 - A full subcategory \mathcal{X} of \mathcal{A} is *contravariantly finite* if for all $M \in \mathcal{A}$ there exists a *right* \mathcal{X} -approximation, that is a map $f : X \to M$ such that $\operatorname{Hom}_{\mathcal{A}}(X', f) : \operatorname{Hom}_{\mathcal{A}}(X', X) \twoheadrightarrow \operatorname{Hom}_{\mathcal{A}}(X', M)$ for all $X' \in \mathcal{X}$.

- ullet $\mathcal A$ is a small length abelian category
 - A full subcategory \mathcal{X} of \mathcal{A} is contravariantly finite if for all $M \in \mathcal{A}$ there exists a right \mathcal{X} -approximation, that is a map $f : X \to M$ such that $\operatorname{Hom}_{\mathcal{A}}(X', f) : \operatorname{Hom}_{\mathcal{A}}(X', X) \twoheadrightarrow \operatorname{Hom}_{\mathcal{A}}(X', M)$ for all $X' \in \mathcal{X}$.



- ullet $\mathcal A$ is a small length abelian category
 - A full subcategory \mathcal{X} of \mathcal{A} is contravariantly finite if for all $M \in \mathcal{A}$ there exists a right \mathcal{X} -approximation, that is a map $f : X \to M$ such that $\operatorname{Hom}_{\mathcal{A}}(X', f) : \operatorname{Hom}_{\mathcal{A}}(X', X) \twoheadrightarrow \operatorname{Hom}_{\mathcal{A}}(X', M)$ for all $X' \in \mathcal{X}$.
 - A full subcategory X of A is covariantly finite if for all M ∈ A there exists a exists a left X-approximation, that is a map f : M → X such that Hom_A(f, X') : Hom_A(M, X') ⇔ Hom_A(X, X') for all X' ∈ X.

- $ullet \mathcal{A}$ is a small length abelian category
 - A full subcategory \mathcal{X} of \mathcal{A} is contravariantly finite if for all $M \in \mathcal{A}$ there exists a right \mathcal{X} -approximation, that is a map $f : X \to M$ such that $\operatorname{Hom}_{\mathcal{A}}(X', f) : \operatorname{Hom}_{\mathcal{A}}(X', X) \twoheadrightarrow \operatorname{Hom}_{\mathcal{A}}(X', M)$ for all $X' \in \mathcal{X}$.
 - A full subcategory \mathcal{X} of \mathcal{A} is covariantly finite if for all $M \in \mathcal{A}$ there exists a exists a left \mathcal{X} -approximation, that is a map $f : M \to X$ such that $\operatorname{Hom}_{\mathcal{A}}(f, X') : \operatorname{Hom}_{\mathcal{A}}(M, X') \hookrightarrow \operatorname{Hom}_{\mathcal{A}}(X, X')$ for all $X' \in \mathcal{X}$.



- ullet $\mathcal A$ is a small length abelian category
 - A full subcategory \mathcal{X} of \mathcal{A} is contravariantly finite if for all $M \in \mathcal{A}$ there exists a right \mathcal{X} -approximation, that is a map $f : X \to M$ such that $\operatorname{Hom}_{\mathcal{A}}(X', f) : \operatorname{Hom}_{\mathcal{A}}(X', X) \twoheadrightarrow \operatorname{Hom}_{\mathcal{A}}(X', M)$ for all $X' \in \mathcal{X}$.
 - A full subcategory \mathcal{X} of \mathcal{A} is *covariantly finite* if for all $M \in \mathcal{A}$ there exists a exists a *left* \mathcal{X} -approximation, that is a map $f : M \to X$ such that $\operatorname{Hom}_{\mathcal{A}}(f, X') : \operatorname{Hom}_{\mathcal{A}}(M, X') \hookrightarrow \operatorname{Hom}_{\mathcal{A}}(X, X')$ for all $X' \in \mathcal{X}$.
 - A full subcategory \mathcal{X} of \mathcal{A} is *functorially finite* if \mathcal{X} is covariantly and contravariantly finite.

• Let \mathcal{X} be a full subcategory of \mathcal{A} .

• Let \mathcal{X} be a full subcategory of \mathcal{A} .

►
$$Fac(\mathcal{X}) = \{Y \in \mathcal{A} : \exists exact sequence X \to Y \to 0, \text{ for some } X \in \mathcal{X}\}$$

- Let \mathcal{X} be a full subcategory of \mathcal{A} .
 - Fac(X) = {Y ∈ A : ∃ exact sequence X → Y → 0, for some X ∈ X}
 We say that X generates A if Fac(X) = A.

- Let \mathcal{X} be a full subcategory of \mathcal{A} .
 - Fac(X) = {Y ∈ A : ∃ exact sequence X → Y → 0, for some X ∈ X}
 We say that X generates A if Fac(X) = A.
 - $\operatorname{Sub}(\mathcal{X}) = \{Y \in \mathcal{A} : \exists \text{ exact sequence } 0 \to Y \to X, \text{ for some } X \in \mathcal{X}\}$

- Let \mathcal{X} be a full subcategory of \mathcal{A} .
 - Fac(X) = {Y ∈ A : ∃ exact sequence X → Y → 0, for some X ∈ X}
 We say that X generates A if Fac(X) = A.
 - Sub(X) = {Y ∈ A : ∃ exact sequence 0 → Y → X, for some X ∈ X}
 We say that X cogenerates A if Sub(X) = A.

- Let \mathcal{X} be a full subcategory of \mathcal{A} .
 - Fac(X) = {Y ∈ A : ∃ exact sequence X → Y → 0, for some X ∈ X}
 We say that X generates A if Fac(X) = A.
 - Sub(X) = {Y ∈ A : ∃ exact sequence 0 → Y → X, for some X ∈ X}
 We say that X cogenerates A if Sub(X) = A.

Remark

In classical homological algebra results are true up to isomorphism. In higher homological algebra the results are true up to homotopy.

Definition

Let \mathcal{A} be an abelian category. A functorially finite generating-cogenerating subcategory \mathcal{M} of \mathcal{A} is *n*-cluster tilting if

$$\mathcal{M} = \{ X \in \mathcal{A} : \operatorname{Ext}^{i}_{\mathcal{A}}(X, M) = 0 \text{ for all } M \in \mathcal{M} \text{ and all } 1 \le i \le n-1 \}$$
$$= \{ Y \in \mathcal{A} : \operatorname{Ext}^{i}_{\mathcal{A}}(M, Y) = 0 \text{ for all } M \in \mathcal{M} \text{ and all } 1 \le i \le n-1 \}.$$

• The notion of *n*-abelian categories was introduced by Jasso.

• The notion of n-abelian categories was introduced by Jasso.

Theorem (Jasso)

Let \mathcal{A} be an abelian category having an *n*-cluster tilting subcategory \mathcal{M} . Then \mathcal{M} is an *n*-abelian category.

\bullet The notion of $n\mbox{-}{\rm abelian}$ categories was introduced by Jasso.

Theorem (Jasso)

Let \mathcal{A} be an abelian category having an *n*-cluster tilting subcategory \mathcal{M} . Then \mathcal{M} is an *n*-abelian category.

Theorem (Kvamme, Ebrahimi–Nasr-Isfahani)

Let \mathcal{M} be a small *n*-abelian category. Then there exists an abelian category \mathcal{A} and a fully faithful functor $F : \mathcal{M} \to \mathcal{A}$ such that the essential image $F(\mathcal{M})$ of F is an *n*-cluster tilting subcategory of \mathcal{A} .

• The notion of n-abelian categories was introduced by Jasso.

Theorem (Jasso)

Let \mathcal{A} be an abelian category having an *n*-cluster tilting subcategory \mathcal{M} . Then \mathcal{M} is an *n*-abelian category.

Theorem (Kvamme, Ebrahimi–Nasr-Isfahani)

Let \mathcal{M} be a small *n*-abelian category. Then there exists an abelian category \mathcal{A} and a fully faithful functor $F : \mathcal{M} \to \mathcal{A}$ such that the essential image $F(\mathcal{M})$ of F is an *n*-cluster tilting subcategory of \mathcal{A} .

From now on we assume that \mathcal{M} is an *n*-cluster tilting subcategory of \mathcal{A} .

Definition (Dickson)

Let \mathcal{A} be an abelian category. Then the pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{A} is a torsion pair if the following conditions are satisfied:

Definition (Dickson)

Let \mathcal{A} be an abelian category. Then the pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{A} is a torsion pair if the following conditions are satisfied:

• For every module M in \mathcal{A} there exists a short exact sequence

$$0 \to tM \xrightarrow{\iota_M} M \xrightarrow{\pi_M} fM \to 0$$

where $tM \in \mathcal{T}$ and $fM \in \mathcal{F}$.

Definition (Dickson)

Let \mathcal{A} be an abelian category. Then the pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{A} is a torsion pair if the following conditions are satisfied:

• For every module M in \mathcal{A} there exists a short exact sequence

$$0 \to tM \xrightarrow{\iota_M} M \xrightarrow{\pi_M} fM \to 0$$

where $tM \in \mathcal{T}$ and $fM \in \mathcal{F}$.

• $\operatorname{Hom}_{\mathcal{A}}(X,Y) = 0$ for all $X \in \mathcal{T}$ and $Y \in \mathcal{F}$.

Torsion pairs

Definition (Dickson)

Let \mathcal{A} be an abelian category. Then the pair $(\mathcal{T}, \mathcal{F})$ of full subcategories of \mathcal{A} is a torsion pair if the following conditions are satisfied:

• For every module M in \mathcal{A} there exists a short exact sequence

$$0 \to tM \xrightarrow{\iota_M} M \xrightarrow{\pi_M} fM \to 0$$

where $tM \in \mathcal{T}$ and $fM \in \mathcal{F}$.

• $\operatorname{Hom}_{\mathcal{A}}(X,Y) = 0$ for all $X \in \mathcal{T}$ and $Y \in \mathcal{F}$.

If $(\mathcal{T}, \mathcal{F})$ is a torsion pair we say that \mathcal{T} is a torsion class and that \mathcal{F} is a torsion free class.

Torsion classes revisited

Definition

Let \mathcal{A} be an abelian category. A full subcategory \mathcal{T} of \mathcal{A} is an torsion class in \mathcal{A} if for every $M \in \mathcal{A}$ there exists a short exact sequence

 $0 \to tM \to M \to fM \to 0,$

where tM is an object of \mathcal{T} and the sequence

 $0 \to \operatorname{Hom}_{\mathcal{A}}(T, fM) \to 0$

is exact, for all objects T in \mathcal{T} .

Torsion classes revisited

Definition

Let \mathcal{A} be an abelian category. A full subcategory \mathcal{T} of \mathcal{A} is an torsion class in \mathcal{A} if for every $M \in \mathcal{A}$ there exists a short exact sequence

 $0 \to tM \to M \to fM \to 0,$

where tM is an object of \mathcal{T} and the sequence

 $0 \to \operatorname{Hom}_{\mathcal{A}}(T, fM) \to 0$

is exact, for all objects T in \mathcal{T} . In this case tM is called the torsion subobject of M with respect to \mathcal{T} .

n-torsion classes

Definition (Jørgensen)

Let \mathcal{M} be an *n*-abelian category. A full subcategory \mathcal{U} of \mathcal{M} is an *n*-torsion class if for every $M \in \mathcal{M}$ there exists an *n*-exact sequence

$$0 \to U^M \to M \to V^1 \xrightarrow{v^1} \cdots \xrightarrow{v^{n-1}} V^n \to 0,$$

where U^M is an object of \mathcal{U} and the sequence

$$0 \to \operatorname{Hom}_{\mathcal{M}}(U, V^1) \to \operatorname{Hom}_{\mathcal{M}}(U, V^2) \to \dots \to \operatorname{Hom}_{\mathcal{M}}(U, V^n) \to 0$$

is exact, for all objects U in \mathcal{U} .

n-torsion classes

Definition (Jørgensen)

Let \mathcal{M} be an *n*-abelian category. A full subcategory \mathcal{U} of \mathcal{M} is an *n*-torsion class if for every $M \in \mathcal{M}$ there exists an *n*-exact sequence

$$0 \to U^M \to M \to V^1 \xrightarrow{v^1} \cdots \xrightarrow{v^{n-1}} V^n \to 0,$$

where U^M is an object of \mathcal{U} and the sequence

$$0 \to \operatorname{Hom}_{\mathcal{M}}(U, V^1) \to \operatorname{Hom}_{\mathcal{M}}(U, V^2) \to \dots \to \operatorname{Hom}_{\mathcal{M}}(U, V^n) \to 0$$

is exact, for all objects U in \mathcal{U} . In this case U^M is called the *n*-torsion subobject of M with respect to \mathcal{U} .

n-torsion classes

Definition (Jørgensen)

Let \mathcal{M} be an *n*-abelian category. A full subcategory \mathcal{U} of \mathcal{M} is an *n*-torsion class if for every $M \in \mathcal{M}$ there exists an *n*-exact sequence

$$0 \to U^M \to M \to V^1 \xrightarrow{v^1} \cdots \xrightarrow{v^{n-1}} V^n \to 0,$$

where U^M is an object of \mathcal{U} and the sequence

$$0 \to \operatorname{Hom}_{\mathcal{M}}(U, V^1) \to \operatorname{Hom}_{\mathcal{M}}(U, V^2) \to \dots \to \operatorname{Hom}_{\mathcal{M}}(U, V^n) \to 0$$

is exact, for all objects U in \mathcal{U} . In this case U^M is called the *n*-torsion subobject of M with respect to \mathcal{U} .

With this definition there is no n-torsion free class associated to an n-torsion class.

H. Treffinger

Introduction

Overview Abelian and *n*-abelian categories Torsion and *n*-torsion classes

From n-torsion classes to torsion classes

Classical torsion classes in disguise The poset of n-torsion classes Harder-Narasimhan filtrations in n-abelian categories

Functorially finite *n*-torsion classes

Generating functorially finite *n*-torsion classes From τ -tilting theory to τ_n -tilting theory

<u>Question</u>: What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

<u>Question:</u> What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

<u>Question:</u> What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class \mathcal{T} in \mathcal{A} is of the form $T(\mathcal{U})$ for some *n*-torsion class \mathcal{U} in \mathcal{M} if and only if the following hold:

<u>Question:</u> What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class \mathcal{T} in \mathcal{A} is of the form $T(\mathcal{U})$ for some *n*-torsion class \mathcal{U} in \mathcal{M} if and only if the following hold:

1. $tM \in \mathcal{U}$ for all $M \in \mathcal{M}$ where t is the torsion functor associated to the torsion class \mathcal{T} ;

<u>Question</u>: What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class \mathcal{T} in \mathcal{A} is of the form $T(\mathcal{U})$ for some *n*-torsion class \mathcal{U} in \mathcal{M} if and only if the following hold:

- 1. $tM \in \mathcal{U}$ for all $M \in \mathcal{M}$ where t is the torsion functor associated to the torsion class \mathcal{T} ;
- 2. \mathcal{T} is the minimal torsion class in \mathcal{A} containing $\{tM : M \in \mathcal{M}\};$

<u>Question:</u> What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class \mathcal{T} in \mathcal{A} is of the form $T(\mathcal{U})$ for some *n*-torsion class \mathcal{U} in \mathcal{M} if and only if the following hold:

- 1. $tM \in \mathcal{U}$ for all $M \in \mathcal{M}$ where t is the torsion functor associated to the torsion class \mathcal{T} ;
- 2. \mathcal{T} is the minimal torsion class in \mathcal{A} containing $\{tM : M \in \mathcal{M}\};$
- 3. $\operatorname{Ext}_{\mathcal{A}}^{n-1}(X,Y) = 0$, for all $X \in \{tM : M \in \mathcal{M}\}$ and $Y \in \{fM' : M' \in \mathcal{M}\}.$

<u>Question</u>: What is the relation between the torsion classes of \mathcal{A} and the *n*-torsion classes of \mathcal{M} ?

• $T(\mathcal{X})$ is the minimal torsion class of \mathcal{A} containing \mathcal{X} .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

A torsion class \mathcal{T} in \mathcal{A} is of the form $T(\mathcal{U})$ for some *n*-torsion class \mathcal{U} in \mathcal{M} if and only if the following hold:

- 1. $tM \in \mathcal{U}$ for all $M \in \mathcal{M}$ where t is the torsion functor associated to the torsion class \mathcal{T} ;
- 2. \mathcal{T} is the minimal torsion class in \mathcal{A} containing $\{tM : M \in \mathcal{M}\};$
- 3. $\operatorname{Ext}_{\mathcal{A}}^{n-1}(X,Y) = 0$, for all $X \in \{tM : M \in \mathcal{M}\}$ and $Y \in \{fM' : M' \in \mathcal{M}\}$.

In this case $\mathcal{U} = \mathcal{T} \cap \mathcal{M} = \{tM : M \in \mathcal{M}\}.$

The poset of n-torsion classes

• tors(\mathcal{A}) := { \mathcal{T} : \mathcal{T} is a torsion class of \mathcal{A} }

The poset of n-torsion classes

- tors(\mathcal{A}) := { \mathcal{T} : \mathcal{T} is a torsion class of \mathcal{A} }
- n-tors(\mathcal{M}) := { $\mathcal{U} : \mathcal{U}$ is an n-torsion class of \mathcal{M} }

The poset of n-torsion classes

- tors(\mathcal{A}) := $\{\mathcal{T}:\mathcal{T} ext{ is a torsion class of } \mathcal{A}\}$
- n-tors(\mathcal{M}) := { $\mathcal{U} : \mathcal{U}$ is an n-torsion class of \mathcal{M} }

Corollary (Asadollahi-Jørgensen-Schroll-T.)

Let \mathcal{M} be the an *n*-cluster tilting subcategory of \mathcal{A} . Then the map T(-): n-tors $(\mathcal{M}) \to$ tors (\mathcal{A}) is a poset monomorphism.

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

 $T(-): n\text{-}\mathsf{tors}(\mathcal{M}) \to \mathsf{tors}(\mathcal{A}) \text{ is not a morphism of lattices.}$

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

T(-): n-tors $(\mathcal{M}) \to$ tors (\mathcal{A}) is not a morphism of lattices.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

 $T(-): n\text{-tors}(\mathcal{M}) \to \text{tors}(\mathcal{A})$ is not a morphism of lattices.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$
$$\mathcal{M} = \operatorname{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

 $T(-):n\text{-}\mathsf{tors}(\mathcal{M})\to\mathsf{tors}(\mathcal{A})$ is not a morphism of lattices.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$
$$\mathcal{M} = \operatorname{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

• $\operatorname{add}\{P(3)\}$ and $\operatorname{add}\{I(1)\}$ are 2-torsion classes of \mathcal{M} .

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

 $T(-):n\text{-}\mathsf{tors}(\mathcal{M})\to\mathsf{tors}(\mathcal{A})$ is not a morphism of lattices.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$
$$\mathcal{M} = \operatorname{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

add{P(3)} and add{I(1)} are 2-torsion classes of M.
add{P(3)} and add{I(1)} are torsion classes of A.

Let $\mathcal{A} = \mod A$ be the module category of an artinian algebra A. Then $\operatorname{tors}(\mathcal{A})$ is a complete lattice.

• Conjecture: n-tors (\mathcal{M}) is a lattice.

 $T(-):n\text{-}\mathsf{tors}(\mathcal{M})\to\mathsf{tors}(\mathcal{A})$ is not a morphism of lattices.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$
$$\mathcal{M} = \operatorname{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

- add $\{P(3)\}$ and add $\{I(1)\}$ are 2-torsion classes of \mathcal{M} .
- add $\{P(3)\}$ and add $\{I(1)\}$ are torsion classes of \mathcal{A} .
- $\operatorname{add}\{P(3) \oplus I(1)\}$ is a torsion class in \mathcal{A} but is **not** a 2-torsion class in \mathcal{M} .

Properties of n-torsion classes

Theorem (Dickson)

Every torsion class \mathcal{T} of an abelian category \mathcal{A} is closed under extensions and quotients.

Properties of n-torsion classes

Theorem (Dickson)

Every torsion class \mathcal{T} of an abelian category \mathcal{A} is closed under extensions and quotients.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Every *n*-torsion class \mathcal{U} of an *n*-abelian category \mathcal{M} is closed under *n*-extensions and *n*-quotients.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Every *n*-torsion class \mathcal{U} of an *n*-abelian category \mathcal{M} is closed under *n*-extensions^{*} and *n*-quotients^{**}.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Every *n*-torsion class \mathcal{U} of an *n*-abelian category \mathcal{M} is closed under *n*-extensions^{*} and *n*-quotients^{**}.

(*) If $U, U' \in \mathcal{U}$ then any *n*-exact sequence in \mathcal{M} of the form

$$0 \to U \to V_1 \to \dots \to V_n \to U' \to 0$$

is Yoneda equivalent to an *n*-exact sequence

$$0 \to U \to V_1' \to \dots \to V_n' \to U' \to 0$$

where $V'_i \in \mathcal{U}$ for all $1 \leq i \leq n$.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Every *n*-torsion class \mathcal{U} of an *n*-abelian category \mathcal{M} is closed under *n*-extensions^{*} and *n*-quotients^{**}.

(**) If $f: X \to U$ is a map in \mathcal{M} where $U \in \mathcal{U}$. Then any *n*-cokernel

$$X \xrightarrow{f} U \xrightarrow{v_1} V_1 \xrightarrow{v_2} \dots \xrightarrow{v_n} V_n \to 0$$

of f is homotopicc to an n-cokernel

$$X \xrightarrow{f} U \xrightarrow{v_1'} V_1' \xrightarrow{v_2'} \dots \xrightarrow{v_n'} V_n' \to 0$$

such that $V'_i \in \mathcal{U}$ for all $1 \leq i \leq n$.

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$

$$\mathcal{M} = \mathrm{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

• $\operatorname{add}\{P(3) \oplus I(1)\}$ is a torsion class in \mathcal{A} but is **not** a 2-torsion class in \mathcal{M} .

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$

$$\mathcal{M} = \mathrm{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

• $\operatorname{add}\{P(3) \oplus I(1)\}$ is a torsion class in \mathcal{A} but is not a 2-torsion class in \mathcal{M} . The following is a 2-exact sequence in \mathcal{M} .

$$0 \to P(3) \to P(2) \to P(1) \to I(1) \to 0$$

Example

$$\mathcal{A} = \mod KQ/I \qquad Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \qquad I = <\alpha\beta >$$

$$\mathcal{M} = \mathrm{add}\{P(1) \oplus P(2) \oplus P(3) \oplus I(1)\} \subset \mathcal{A}$$

• $\operatorname{add}\{P(3) \oplus I(1)\}$ is a torsion class in \mathcal{A} but is **not** a 2-torsion class in \mathcal{M} . The following is a 2-exact sequence in \mathcal{M} .

$$0 \to P(3) \to P(2) \to P(1) \to I(1) \to 0$$

Here $I(1), P(3) \in \text{add}\{P(3) \oplus I(1)\}$ but $P(1), P(2) \notin \text{add}\{P(3) \oplus I(1)\}$.

Towards stability conditions in higher homological algebra

• <u>Aim</u>: Obtain a notion of stability conditions for n-abelian categories.

Towards stability conditions in higher homological algebra

- Aim: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:

Towards stability conditions in higher homological algebra

- Aim: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:
 - Definition based on short exact sequences.

- <u>Aim</u>: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:
 - Definition based on short exact sequences.
 Not clear how to define them using *n*-exact sequences.

- <u>Aim</u>: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:
 - Definition based on short exact sequences.
 Not clear how to define them using *n*-exact sequences.
 - Stability conditions induce Harder-Narasimhan filtrations for every object in the category.

- <u>Aim</u>: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:
 - Definition based on short exact sequences.
 Not clear how to define them using *n*-exact sequences.
 - Stability conditions induce Harder-Narasimhan filtrations for every object in the category.
 - Slicings [Bridgeland].

- <u>Aim</u>: Obtain a notion of stability conditions for n-abelian categories.
- Stability conditions in abelian categories [Rudakov, Bridgeland]:
 - Definition based on short exact sequences.
 Not clear how to define them using *n*-exact sequences.
 - Stability conditions induce Harder-Narasimhan filtrations for every object in the category.
 - Slicings [Bridgeland].

Theorem (T.)

Let \mathcal{A} be an abelian length category. Then every chain of torsion classes η induces a slicing \mathcal{P}_{η} in \mathcal{A} . Moreover every slicing in \mathcal{A} arises this way.

Definition (T.)

A chain of torsion classes η in an abelian category \mathcal{A} is a set of torsion classes

$$\eta := \{\mathcal{T}_s : s \in [0,1], \ \mathcal{T}_0 = \mathcal{A}, \mathcal{T}_1 = \{0\} \text{ and } \mathcal{T}_s \subseteq \mathcal{T}_r \text{ if } r \leq s\}.$$

Definition (T.)

A chain of torsion classes η in an abelian category \mathcal{A} is a set of torsion classes

$$\eta := \{ \mathcal{T}_s : s \in [0,1], \ \mathcal{T}_0 = \mathcal{A}, \mathcal{T}_1 = \{0\} \text{ and } \mathcal{T}_s \subseteq \mathcal{T}_r \text{ if } r \leq s \}.$$

The slicing \mathcal{P}_{η} induced by η is

 $\mathcal{P}_{\eta} := \{\mathcal{P}_s : \mathcal{P}_s \text{ is a subcategory of } \mathcal{A} \text{ and } s \in [0,1]\}.$

Theorem (T.)

Let \mathcal{A} be an abelian category, η a chain of torsion classes in \mathcal{A} and \mathcal{P}_{η} be the slicing induced by η . Then every object $M \in \mathcal{A}$ admits a Harder-Narasimhan filtration with respect to η .

Theorem (T.)

Let \mathcal{A} be an abelian category, η a chain of torsion classes in \mathcal{A} and \mathcal{P}_{η} be the slicing induced by η . Then every object $M \in \mathcal{A}$ admits a Harder-Narasimhan filtration with respect to η . That is a filtration

 $M_0 \subset M_1 \subset \cdots \subset M_t$

such that:

Theorem (T.)

Let \mathcal{A} be an abelian category, η a chain of torsion classes in \mathcal{A} and \mathcal{P}_{η} be the slicing induced by η . Then every object $M \in \mathcal{A}$ admits a Harder-Narasimhan filtration with respect to η . That is a filtration

$$M_0 \subset M_1 \subset \cdots \subset M_t$$

such that:

- 1. $0 = M_0$ and $M_t = M;$
- 2. there exists $r_k \in [0, 1]$ such that $M_k/M_{k-1} \in \mathcal{P}_{r_k}$ for all $1 \le k \le t$;

3. $r_1 > r_2 > \cdots > r_t$.

Theorem (T.)

Let \mathcal{A} be an abelian category, η a chain of torsion classes in \mathcal{A} and \mathcal{P}_{η} be the slicing induced by η . Then every object $M \in \mathcal{A}$ admits a Harder-Narasimhan filtration with respect to η . That is a filtration

$$M_0 \subset M_1 \subset \cdots \subset M_t$$

such that:

- 1. $0 = M_0$ and $M_t = M;$
- 2. there exists $r_k \in [0, 1]$ such that $M_k/M_{k-1} \in \mathcal{P}_{r_k}$ for all $1 \le k \le t$;

3.
$$r_1 > r_2 > \cdots > r_t$$
.

Moreover this filtration is unique up to isomorphism.

Definition (Asadollahi-Jørgensen-Schroll-T.)

A chain of *n*-torsion classes δ in an *n*-abelian category \mathcal{M} is a set of *n*-torsion classes

$$\delta := \{ \mathcal{U}_s : s \in [0,1], \mathcal{U}_0 = \mathcal{M}, \mathcal{U}_1 = \{0\} \text{ and } \mathcal{U}_s \subseteq \mathcal{U}_r \text{ if } r \leq s \}.$$

Definition (Asadollahi-Jørgensen-Schroll-T.)

A chain of *n*-torsion classes δ in an *n*-abelian category \mathcal{M} is a set of *n*-torsion classes

$$\delta := \{ \mathcal{U}_s : s \in [0,1], \, \mathcal{U}_0 = \mathcal{M}, \, \mathcal{U}_1 = \{0\} \text{ and } \mathcal{U}_s \subseteq \mathcal{U}_r \text{ if } r \leq s \}.$$

The slicing \mathcal{Q}_{δ} induced by δ is

 $\mathcal{Q}_{\delta} := \{ \mathcal{Q}_s : \mathcal{Q}_s \text{ is a class of } n\text{-cokernels in } \mathcal{M} \text{ and } s \in [0,1] \}.$

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let \mathcal{M} be an abelian length category, δ a chain of *n*-torsion classes in \mathcal{M} and \mathcal{Q}_{δ} be the slicing induced by δ . Then every object $M \in \mathcal{M}$ admits a Harder-Narasimhan filtration with respect to δ .

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let \mathcal{M} be an abelian length category, δ a chain of *n*-torsion classes in \mathcal{M} and \mathcal{Q}_{δ} be the slicing induced by δ . Then every object $M \in \mathcal{M}$ admits a Harder-Narasimhan filtration with respect to δ . That is a filtration

 $M_0 \subset M_1 \subset \cdots \subset M_t$

such that:

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let \mathcal{M} be an abelian length category, δ a chain of *n*-torsion classes in \mathcal{M} and \mathcal{Q}_{δ} be the slicing induced by δ . Then every object $M \in \mathcal{M}$ admits a Harder-Narasimhan filtration with respect to δ . That is a filtration

$$M_0 \subset M_1 \subset \cdots \subset M_t$$

such that:

- 1. $0 = M_0$ and $M_t = M;$
- 2. there exists $r_k \in [0, 1]$ such that $coker(M_{k-1} \to M_k) \in \mathcal{Q}_{r_k}$ for all $1 \le k \le t$; 3. $r_1 > r_2 > \cdots > r_t$.

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let \mathcal{M} be an abelian length category, δ a chain of *n*-torsion classes in \mathcal{M} and \mathcal{Q}_{δ} be the slicing induced by δ . Then every object $M \in \mathcal{M}$ admits a Harder-Narasimhan filtration with respect to δ . That is a filtration

$$M_0 \subset M_1 \subset \cdots \subset M_t$$

such that:

- 1. $0 = M_0$ and $M_t = M;$
- 2. there exists $r_k \in [0, 1]$ such that $coker(M_{k-1} \to M_k) \in \mathcal{Q}_{r_k}$ for all $1 \le k \le t$;
- 3. $r_1 > r_2 > \cdots > r_t$.

Moreover this filtration is unique up to isomorphism.

Compatibility of Harder-Narasimhan filtrations

• T(-): n-tors $(\mathcal{M}) \to$ tors (\mathcal{A})

Compatibility of Harder-Narasimhan filtrations

• T(-): n-tors $(\mathcal{M}) \to$ tors (\mathcal{A})

• Let δ be a chain of *n*-torsion classes in \mathcal{M} and consider the chain of torsion classes $T(\delta)$ in \mathcal{A} as follows.

 $T(\delta) := \{T(\mathcal{U}_s) : s \in [0,1]\}.$

Compatibility of Harder-Narasimhan filtrations

• T(-): n-tors $(\mathcal{M}) \to$ tors (\mathcal{A})

• Let δ be a chain of *n*-torsion classes in \mathcal{M} and consider the chain of torsion classes $T(\delta)$ in \mathcal{A} as follows.

 $T(\delta) := \{T(\mathcal{U}_s) : s \in [0,1]\}.$

Theorem (Asadollahi-Jørgensen-Schroll-T.)

Let δ be a chain of *n*-torsion classes in $\mathcal{M} \subset \mathcal{A}$ and $M \in \mathcal{M}$. Then the Harder-Narasimhan filtration of M induced by δ is isomorphic to the Harder-Narasimhan filtration of M induced by $T(\delta)$.

Introduction

Overview Abelian and *n*-abelian categories Torsion and *n*-torsion classes

From *n*-torsion classes to torsion classes

Classical torsion classes in disguise The poset of n-torsion classes Harder-Narasimhan filtrations in n-abelian categories

Functorially finite *n*-torsion classes

Generating functorially finite *n*-torsion classes From τ -tilting theory to τ_n -tilting theory

• A is a finite dimensional algebra over a field K.

A is a finite dimensional algebra over a field K.
A = mod A.

- A is a finite dimensional algebra over a field K.
- $\mathcal{A} = \mod A$.
- $\bullet \ \mathcal{M}$ is an n-cluster tilting subcategory of \mathcal{A}

- A is a finite dimensional algebra over a field K.
- $\mathcal{A} = \operatorname{mod} A$.
- $\bullet \ \mathcal{M}$ is an n-cluster tilting subcategory of \mathcal{A}
- The *n*-th Auslander-Reiten translation in \mathcal{A} is defined as $\tau_n M := \tau \Omega^{n-1} M$.

- A is a finite dimensional algebra over a field K.
- $\mathcal{A} = \operatorname{mod} \mathcal{A}$.
- \mathcal{M} is an n-cluster tilting subcategory of \mathcal{A}
- The *n*-th Auslander-Reiten translation in \mathcal{A} is defined as $\tau_n M := \tau \Omega^{n-1} M$.
- We say that $M \in \mathcal{X} \subset \mathcal{A}$ is Ext^n -projective in \mathcal{X} if $\operatorname{Ext}^n_{\mathcal{M}}(M, X) = 0$ for all $X \in \mathcal{X}$.

- A is a finite dimensional algebra over a field K.
- $\mathcal{A} = \mod \mathcal{A}$.
- ${\mathcal M}$ is an n-cluster tilting subcategory of ${\mathcal A}$
- The *n*-th Auslander-Reiten translation in \mathcal{A} is defined as $\tau_n M := \tau \Omega^{n-1} M$.
- We say that $M \in \mathcal{X} \subset \mathcal{A}$ is Ext^n -projective in \mathcal{X} if $\operatorname{Ext}^n_{\mathcal{M}}(M, X) = 0$ for all $X \in \mathcal{X}$.
- An object $M \in \mathcal{M}$ is τ_n -rigid if $\operatorname{Hom}_A(M, \tau_n M) = 0$.

- A is a finite dimensional algebra over a field K.
- $\mathcal{A} = \mod A$.
- ${\mathcal M}$ is an n-cluster tilting subcategory of ${\mathcal A}$
- The *n*-th Auslander-Reiten translation in \mathcal{A} is defined as $\tau_n M := \tau \Omega^{n-1} M$.
- We say that $M \in \mathcal{X} \subset \mathcal{A}$ is Ext^n -projective in \mathcal{X} if $\operatorname{Ext}^n_{\mathcal{M}}(M, X) = 0$ for all $X \in \mathcal{X}$.
- An object $M \in \mathcal{M}$ is τ_n -rigid if $\operatorname{Hom}_A(M, \tau_n M) = 0$.
- Let $M \in \mathcal{M}$ and P be a projective A-module. We say that the pair (M, P) is τ_n -rigid if M is τ_n -rigid and $\operatorname{Hom}_A(P, M) = 0$.

Ext^{n} -projective modules in *n*-torsion classes

Ext^n -projective modules in *n*-torsion classes

Theorem (Auslander-Smalø)

Let \mathcal{T} be a torsion class in mod A and let $M \in \mathcal{T}$. Then M is Ext-projective in \mathcal{T} if and only if $\operatorname{Hom}_A(T, \tau M) = 0$ for all $T \in \mathcal{T}$. In particular M is τ -rigid.

Ext^n -projective modules in *n*-torsion classes

Theorem (Auslander-Smalø)

Let \mathcal{T} be a torsion class in mod A and let $M \in \mathcal{T}$. Then M is Ext-projective in \mathcal{T} if and only if $\operatorname{Hom}_A(T, \tau M) = 0$ for all $T \in \mathcal{T}$. In particular M is τ -rigid.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be an *n*-torsion class in \mathcal{M} and let $M \in \mathcal{U}$. Then M is Ext^n -projective in \mathcal{U} if and only if $\text{Hom}_A(U, \tau_n M) = 0$ for all $U \in \mathcal{U}$. In particular M is τ_n -rigid.

• From now on \mathcal{U} is a functorially finite *n*-torsion class of \mathcal{M} .

- From now on \mathcal{U} is a functorially finite *n*-torsion class of \mathcal{M} .
- $A_A \in \mathcal{M} \subset \operatorname{mod} A$.

- From now on $\mathcal U$ is a functorially finite n-torsion class of $\mathcal M$.
- $A_A \in \mathcal{M} \subset \operatorname{mod} A$.

Proposition (Auslander-Smalø)

Let \mathcal{T} be a functorially finite torsion class in mod A and let $T_A \in \mathcal{T}$ be the minimal left \mathcal{T} -approximation of A. Then T_A is τ -rigid and $\mathcal{T} = \operatorname{Fac} T_A$.

- From now on $\mathcal U$ is a functorially finite n-torsion class of $\mathcal M$.
- $A_A \in \mathcal{M} \subset \operatorname{mod} A$.

Proposition (Auslander-Smalø)

Let \mathcal{T} be a functorially finite torsion class in mod A and let $T_A \in \mathcal{T}$ be the minimal left \mathcal{T} -approximation of A. Then T_A is τ -rigid and $\mathcal{T} = \operatorname{Fac} T_A$.

Proposition (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class of \mathcal{M} and let U_A^0 be the minimal left \mathcal{U} -approximation of A. Then U_A^0 is τ_n -rigid and $\mathcal{U} = \operatorname{Fac} U_A^0 \cap \mathcal{M}$.

- From now on \mathcal{U} is a functorially finite *n*-torsion class of \mathcal{M} .
- $A_A \in \mathcal{M} \subset \operatorname{mod} A$.

Proposition (Auslander-Smalø)

Let \mathcal{T} be a functorially finite torsion class in mod A and let $T_A \in \mathcal{T}$ be the minimal left \mathcal{T} -approximation of A. Then T_A is τ -rigid and $\mathcal{T} = \operatorname{Fac} T_A$.

Proposition (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class of \mathcal{M} and let U_A^0 be the minimal left \mathcal{U} -approximation of A. Then U_A^0 is τ_n -rigid and $\mathcal{U} = \operatorname{Fac} U_A^0 \cap \mathcal{M}$.

Not every τ_n -rigid module generates an n-torsion class.

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

Let U_A be the minimal add-generator of add $\left\{ \bigoplus_{i=0}^n U_A^i \right\}$.

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

- Let U_A be the minimal add-generator of add $\left\{ \bigoplus_{i=0}^n U_A^i \right\}$.
- <u>Remark</u>: Note that $U_A \in \mathcal{U}$ because \mathcal{U} is closed under *n*-cokernels.

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

- Let U_A be the minimal add-generator of $\operatorname{add} \left\{ \bigoplus_{i=0}^n U_A^i \right\}$.
- <u>Remark</u>: Note that $U_A \in \mathcal{U}$ because \mathcal{U} is closed under *n*-cokernels.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class in \mathcal{M} .

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

- Let U_A be the minimal add-generator of $\operatorname{add}\left\{ \bigoplus_{i=0}^n U_A^i \right\}$.
- <u>Remark</u>: Note that $U_A \in \mathcal{U}$ because \mathcal{U} is closed under *n*-cokernels.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class in \mathcal{M} . Then U_A is an Ext^n -projective object of \mathcal{U} .

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

- Let U_A be the minimal add-generator of add $\left\{ \bigoplus_{i=0}^n U_A^i \right\}$.
- <u>Remark</u>: Note that $U_A \in \mathcal{U}$ because \mathcal{U} is closed under *n*-cokernels.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class in \mathcal{M} . Then U_A is an Ext^n -projective object of \mathcal{U} . Moreover, if $U' \in \mathcal{U}$ is an Ext^n -projective object, then $\operatorname{add} U' \subset \operatorname{add} U_A$.

$$A \to U_A^0 \to U_A^1 \to \ldots \to U_A^n \to 0$$

- Let U_A be the minimal add-generator of add $\left\{ \bigoplus_{i=0}^n U_A^i \right\}$.
- <u>Remark</u>: Note that $U_A \in \mathcal{U}$ because \mathcal{U} is closed under *n*-cokernels.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class in \mathcal{M} . Then U_A is an Ext^n -projective object of \mathcal{U} . Moreover, if $U' \in \mathcal{U}$ is an Ext^n -projective object, then $\operatorname{add} U' \subset \operatorname{add} U_A$. In particular U_A^i is an Ext^n -projective object in \mathcal{U} for all $0 \leq i \leq n$. • Let \mathcal{U} and U_A as above. We define $P_{\mathcal{U}}$ to be the minimal add -generator of

$$\mathcal{P}_{\mathcal{U}} = \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U) = 0 \text{ with } U \in \mathcal{U}\}$$
$$= \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U_{A}) = 0\}.$$

• Let \mathcal{U} and U_A as above. We define $P_{\mathcal{U}}$ to be the minimal add -generator of

$$\mathcal{P}_{\mathcal{U}} = \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U) = 0 \text{ with } U \in \mathcal{U}\}$$
$$= \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U_{A}) = 0\}.$$

• |M| is the number of isomorphism classes of indecomposable direct summands of M.

• Let \mathcal{U} and U_A as above. We define $P_{\mathcal{U}}$ to be the minimal add -generator of

$$\mathcal{P}_{\mathcal{U}} = \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U) = 0 \text{ with } U \in \mathcal{U}\}$$
$$= \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U_{A}) = 0\}.$$

• |M| is the number of isomorphism classes of indecomposable direct summands of M.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class of $\mathcal{M} \subset \mod A$. Then $(U_A, P_{\mathcal{U}})$ is a τ_n -rigid pair and $|U_A| + |P_{\mathcal{U}}| = |A|$.

• Let \mathcal{U} and U_A as above. We define $P_{\mathcal{U}}$ to be the minimal add-generator of

$$\mathcal{P}_{\mathcal{U}} = \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U) = 0 \text{ with } U \in \mathcal{U}\}\$$
$$= \{P : P \text{ is projective and } \operatorname{Hom}_{A}(P, U_{A}) = 0\}.$$

• |M| is the number of isomorphism classes of indecomposable direct summands of M.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be a functorially finite *n*-torsion class of $\mathcal{M} \subset \mod A$. Then (U_A, P_U) is a τ_n -rigid pair and $|U_A| + |P_U| = |A|$.

• <u>Remark</u>: Martinez-Mendoza have similar results studying τ_n -rigid modules in mod A, regardless of the existence of the n-cluster tilting subcategory $\mathcal{M} \subset \mod A$.

• A τ -rigid pair (T, P) is said to be τ -tilting if |T| + |P| = |A|.

• A $\tau\text{-rigid}$ pair (T,P) is said to be $\tau\text{-tilting if }|T|+|P|=|A|.$

```
Theorem (Adachi-Iyama-Reiten)
```

A torsion class \mathcal{T} is functorially finite if and only if there exists a τ -tilting pair (T, P) such that $\mathcal{T} = \operatorname{Fac} T$.

• A τ -rigid pair (T, P) is said to be τ -tilting if |T| + |P| = |A|.

```
Theorem (Adachi-Iyama-Reiten)
```

A torsion class \mathcal{T} is functorially finite if and only if there exists a τ -tilting pair (T, P) such that $\mathcal{T} = \operatorname{Fac} T$.

• Recall that $\mathcal{U} = \mathcal{M} \cap \mathcal{T}$ for some torsion class \mathcal{T} of mod A.

• A τ -rigid pair (T, P) is said to be τ -tilting if |T| + |P| = |A|.

Theorem (Adachi-Iyama-Reiten)

A torsion class \mathcal{T} is functorially finite if and only if there exists a τ -tilting pair (T, P) such that $\mathcal{T} = \operatorname{Fac} T$.

• Recall that $\mathcal{U} = \mathcal{M} \cap \mathcal{T}$ for some torsion class \mathcal{T} of mod A.

Lemma (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let $\mathcal{U} = \mathcal{T} \cap \mathcal{M}$ be an *n*-torsion class of \mathcal{M} . If \mathcal{T} is functorially finite then \mathcal{U} is also functorially finite.

• Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P) and consider the \mathcal{M} -coresolution of T.

• Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P) and consider the \mathcal{M} -coresolution of T.

$$0 \to T \to U_T^0 \to U_T^1 \to \ldots \to U_T^{n-1} \to 0$$

• Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P) and consider the \mathcal{M} -coresolution of T.

$$0 \to T \to U_T^0 \to U_T^1 \to \ldots \to U_T^{n-1} \to 0$$

• Define U_T be the minimal add-generator of $\operatorname{add} \left\{ \bigoplus_{i=0}^{n-1} U_T^i \right\}$.

• Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P) and consider the \mathcal{M} -coresolution of T.

$$0 \to T \to U_T^0 \to U_T^1 \to \ldots \to U_T^{n-1} \to 0$$

- Define U_T be the minimal add-generator of add $\left\{ \bigoplus_{i=0}^{n-1} U_T^i \right\}$.
- <u>Remark</u>: $U_T \in \mathcal{U}$.

• Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P) and consider the \mathcal{M} -coresolution of T.

$$0 \to T \to U_T^0 \to U_T^1 \to \ldots \to U_T^{n-1} \to 0$$

- Define U_T be the minimal add-generator of $\operatorname{add} \left\{ \bigoplus_{i=0}^{n-1} U_T^i \right\}$.
- <u>Remark</u>: $U_T \in \mathcal{U}$.

Theorem (August-Haugland-Jacobsen-Kvamme-Palu-T.)

Let \mathcal{U} be an *n*-torsion class such that $\mathcal{U} = \mathcal{M} \cap \operatorname{Fac} T$ for some τ -tilting pair (T, P). Then the pair (U_T, P) is a τ_n -rigid pair such that $\operatorname{add} U_T = \operatorname{add} U_A$ and $\operatorname{add} P = \operatorname{add} P_{\mathcal{U}}$.

Thank you very much! ③