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Goal of the Talk

I am a combinatorialist who likes to study certain lattice-posets
called semidistributive lattices.
I want to tell you a story that begins with purely combinatorial
work from my thesis, and ends in the world of torsion classes.



Set Up

• Let Λ be a finite dimensional, basic algebra over an arbitrary
field K .

• Denote by modΛ the category of finitely generated (right)
modules.

• All subcategories are assumed full and closed under
isomorphisms.

• (−)[1] is the shift functor.

• S ∈ modΛ or Db(modΛ) is called a brick if End(S) is a
division algebra. A collection of Hom-orthogonal bricks is a
semibrick.



Torsion Classes

Let T ,F be (full, closed under isomorphism) subcategories of
modΛ. Then the pair (T ,F) is called a torsion pair if each of the
following holds:

1 HomΛ(M,N) = 0 for all M ∈ T and N ∈ F .

2 HomΛ(M,−)|F = 0 implies that M ∈ T .

3 HomΛ(−,N)|T = 0 implies that N ∈ F .

For a torsion pair (T ,F), we say that T is a torsion class, and F is
a torsion free class.



Running Example

Equivalently, a torsion class T is a class of modules that is closed
under quotients, isomorphisms, and extensions. Consider the set of
modules over the path algebra with quiver Q = 1→ 2.

• S1 - Simple (no submodules or quotients)

• S2 - Simple (no submodules or quotients)

• P1 - Projective modules which is an extension of S1 and S2.

S2 ↪→ P1 � S1



Lattice of Torsion classes

We study the lattice (poset) of torsion classes also denoted torsΛ
in which S ≤ T whenever S ⊆ T .



Semidistributive lattices

Definition
A lattice L is a poset such that for each pair of elements u and w

• the smallest upper bound or join u ∨ w exists and

• the greatest lower bound or meet u ∧ w exists.



Semidistributive lattices



Cover relations

Definition
An element y covers x if y > x and there is no z such that
y > z > x . In this case we also say that x is covered by y , and we
use the notation y ·> x . The pair (x , y) is called a cover relation.



Cover relations



Semidistributive Lattices

Definition
A semidistributive lattice L satisfies a weakening of the distributive
law. For any x , y , and z in L:

If x ∨ y = x ∨ z , then x ∨ (y ∧ z) = x ∨ y

If x ∧ y = x ∧ z , then x ∧ (y ∨ z) = x ∧ y

Important Examples

• the Tamari lattices and c-Cambrian lattices

• the weak order for any finite Coxeter group W

• the lattice of torsion classes*



Semidistributive lattices are special

Each element of a finite semidistributive lattice can be factored
uniquely as the join of certain irreducible elements.

Definition
• An element j ∈ L is join-irreducible if j =

∨
A implies j ∈ A,

where A is finite.

• An element is completely join-irreducible if j is covers a
unique element, which we write as j∗.

• When lattice is finite these notions coincide.



Semidistributive lattices are special

Definition: A unique join factorization

The canonical join representation of an element x is the unique
“lowest” irredundant expression x =

∨
A.

One can define an analogous “factorization” in terms of the meet
operation called the canonical meet representation.

Theorem
A finite lattice L is semidistributive provided that each element has

• a canonical join representation and

• a canonical meet representation.



Running Example



Running Example

Facts and Observations
• In a finite lattice, each canonical join representation consists

of only completely join-irreducible elements.

• For torsion classes, there is a bijection between completely
join-irreducible torsion classes and bricks:

M 7→ Filt(Gen(M))

• Not all subsets of completely join-irreducible elements give
rise to a canonical join representation.



Running Example



A Pairwise Property

Theorem [B. 2016]

Let L be a finite semidistributive lattice and let D be a set of
completely join-irreducible elements in L. Then there exists an
element x ∈ L such that x =

∨
D is the CJR of x if and only if

there exists an element xs,t such that xs,t = s ∨ t is the CJR of xs,t
for each pair s, t ∈ D.

Theorem[B., Carroll, Zhu]

Let D be a set of bricks of Λ. Then
∨

M∈D Filt(Gen(M)) is the
CJR for some torsion class if and only if D is a semibrick.



New Projects

Part II (Joint with G. Todorov and S. Zhu)

We study a certain map called κ which was key in proving that
CJR’s are defined by a pairwise condition.

Part III (Joint with E. J. Hanson)

We study a pairwise condition for 2-term simple minded collections.



Part II



The kappa map

The “kappa” map is a map which takes completely join-irreducible
elements to completely meet-irreducible elements.

Main Definition
Let j be a (completely) join-irreducible element of a lattice L, and
let j∗ be the unique element covered by j . Define κ(j) to be:

κ(j) := unique max{x ∈ L : j∗ ≤ x and j 6≤ x},

when such an element exists.



Running Example



Running Example



When does kappa exist?

Fact/Observation

• If L is a finite lattice, then κ is well-defined and is a bijection
if and only if L is semidistributive.

• kappa helps connect the unique factorization in terms of the
join (CJR) to the unique factorization in terms of the meet.

Notation
In the next slide CJI stands for the set of completely join-irreducible
elements (i.e. the domain of κ), and CMI stands for the set of
completely meet-irreducible elements (i.e. the codomain).



kappa for torsion classes

Main Theorem A [B., Todorov, Zhu]

Let Λ be a finite dimensional algebra, and let M be a Λ-brick.

• Each completely join-irreducible torsion class has the form
Filt(Gen(M)), where M is a brick.

• κ : CJI(torsΛ)→ CMI(torsΛ) is a bijection with

κ(Filt(Gen(M))) = ⊥M

where ⊥M denotes the set {X ∈ mod Λ|HomΛ(X ,M) = 0}.

Remark
The kappa-map is well defined for finite semidistributive lattices,
but the lattice of torsion classes is rarely finite. What makes this
result interesting is that we show that κ is well-defined even when
the lattice of torsion classes is infinite.



Extending the kappa map

Definition
Let L be a finite semidistributive lattice. Let x be an element
which has a canonical join representation such that κ(j) is defined
for each j ∈ CJR(x). Define

κ̄(x) =
∧
{κ(j) : j ∈ CJR(x)}.

Corollary[B., Todorov, Zhu]

Let Λ be a finite dimensional algebra. Let be a torsion class which
has a canonical join representation of the following form:
CJR(T ) =

∨
α∈A Filt(Gen(Mα)), where Mα are Λ-bricks. Then

κ̄(T ) is defined and is of the form:

κ̄(T ) =
⋂
α∈A

⊥Mα.



Running Example



Iterative Compositions of κ

Theorem B
Let torsΛ be finite, and let r be the number of vertices in the
corresponding quiver Q. For any T ∈ torsΛ let |T | := |CJR(T )|
denote the number of canonical joinands of T . Then for any
κ̄-orbit O we have

1

|O|
∑
T ∈O
|T | = r/2



Iterative Compositions of κ

Theorem C
Recall that each join-irreducible torsion class is Filt(Gen(M)),
where M is a brick. When Λ is hereditary, then applying κ̄ twice
corresponds to applying the (inverse of the) Auslander-Reiten
translation to S .

κ̄2(Filt(Gen(M))) = Filt(Gen(τ̄−1M)).

Here τ̄−1M = τ−1M for non-injective modules M and
τ̄−1I (S) = P(S) where I (S) and P(S) are the injective envelope
and projective cover of the same simple S .



Part III

Now we return to thinking about pairwise conditions. From here
on out we will restrict to Λ τ -tilting finite, so that torsΛ is finite.



Part III: A Pairwise condition

• Recall that CJR’s are determined by a pairwise condition: A
collection D of bricks gives rise to a CJR iff D is a semibrick.

• The same statement is true for canonical meet
representations: A collection U of bricks gives rise to a CMR
iff U is a semibrick.

• What about when we look at D t U together?



Part III: A Pairwise condition

Main Question
Suppose that D is a semibrick and U is a semibrick.

• Then we know that
∨
{Filt(Gen(S)) : S ∈ D} is the CJR for

some torsion class T .

• We also know that
⋂
{⊥T : T ∈ U} is the CMR for some

torsion class T ′.
• Can we tell whether T = T ′ just by checking a condition for

pairs S ∈ D and T ∈ U?



Brick Labeling

• We say that a brick S labels an upper cover relation T <· T ′
in the lattice torsΛ provided that T ′ = Filt(T ∪ S).

• That is, T ′ is the closure of T ∪ {S} under iterative
extensions.

• The brick S is called a minimal extending module following
[BCZ19].



Brick Labeling



Brick Labeling

• The set of bricks that label the lower cover relations for a
torsion class T is precisely the set of bricks in its CJR. We
denote this set of bricks with D (for “down”).

• The set of bricks that label the upper cover relations for a
torsion class T is precisely the set of bricks in its CMR. We
denote this set of bricks with U (for “up”).



Brick Labeling



Brick Labeling

Reframe our main question

Given semibricks D t U , when does there exist a torsion class T
such that D labels the lower cover relations and U labels the upper
cover relations. Can we check a condition on pairs S ∈ D and
T ∈ U?

Equivalently...

Given semibricks D t U [1], when is D t U [1] a 2-term simple
minded collection? Can we check a condition on pairs S ∈ D and
T [1] ∈ U [1]?



Observations and Key Definitions

Necessary Conditions

Let D and U be semibricks. If D t U label the cover relations of
some torsion class T then...

1 Hom(D,U) = 0

2 Ext(D,U) = 0



Observations and Key Definitions

Let D and U be semibricks, and let X = D t U [1].

1 X is called a semibrick pair if Hom(D,U) = 0 = Ext(D,U).

2 If in addition the smallest triangulated subcategory of
Db(modΛ) containing X is Db(modΛ), then X is called a
2-term simple minded collection.

Restate Main Question
Given a semibrick pair X = D tU [1], can we determine whether X
is a 2-term simple minded collection by checking some conditions
for pairs S ∈ D and T [1] ∈ U [1]?



Observations and Key Definitions
We have the following main definition.

Definition
Let D t U [1] be a semibrick pair.

1 We say that DtU [1] is completable provided that there exists
a 2-term simple minded collection that contains it.

2 We say that D t U [1] is pairwise completable provided that
for all S ∈ D and T ∈ U there exists a 2-term simple minded
collection containing S and T [1].

3 We say that Λ has the pairwise completability property
provided that each pairwise completable semibrick pair is
completable.

Remark
Let rk(Λ) be the number of simple modules in Λ, up to
isomorphism. Each 2-term simple minded collection has
rk(Λ)-many elements.



Observations about completability

• If we want to check a pairwise condition, we have to phrase
our question in terms of completability. A pair of modules S
and T [1] will be a simple minded collection only if rk(Λ) = 2.

• If D t U [1] is completable, then it is pairwise completable.

• We are interested in the converse.

• These notions coincide trivially when rk(Λ) = 2.



Motivation

• Our motivation comes from the study of picture groups and
picture spaces.

• The picture group of an algebra was first defined by
Igusa-Todorov-Weyman [ITW] in the (representation finite)
hereditary case and later generalized to τ -tilting finite algebras
by the second author and Igusa [HI].

• It is a finitely presented group whose relations encode the
structure of the lattice of torsion classes.



Motivation



Motivation

• The corresponding picture space is the classifying space of the
(τ)-cluster morphism category of the algebra.

• The second author and Igusa have shown that the picture
group and picture space have isomorphic (co-)homology when
Λ has the pairwise completability property (plus one technical
condition outlined in [HI]).



Favorable Evidence

• Hereditary algebras [IT] and Nakayama algebras [HI] have the
pairwise completability property.

• In [GM20], 2-term simple minded collections were classified
using a combinatorial model for certain special Nakayama
algebras called tiling algebras.

• Not only do tiling algebras have the pairwise completability
property, but this pairwise condition can be described in terms
of a (non)crossing condition for certain arcs in a disc.



Main Tools

“Definition”
• Given a semibrick pair X = (D,U [1]) and a brick S ∈ D the

left mutation of X at S is a new semibrick pair X ′.
• When X is completable, left mutation corresponds to moving

down by a cover relation in the lattice of torsion classes.



Preprojective algebras

• Consider a Dynkin diagram W of type A, D, or E.

• Let Q be the quiver obtained by replacing each edge of W
with a 2-cycle.

• The preprojective algebra of type W is the algebra
ΠW := KQ/I , where I is generated by the sums of all 2-cycles
sharing a source/target.

1

1 2 3 2 3

4

α

α

α∗

β∗

β
α∗

β∗
γ∗

β

γ

A3 : αα∗, ββ∗, α∗α+β∗β D4 : αα∗, ββ∗, γγ∗, α∗α+β∗β+γ∗γ



Preprojective algebras

Theorem[B.Hanson]

Let W be a Dynkin diagram of type A, D, or E. Then ΠW has the
pairwise 2-simple minded completability property if and only if
W = An with n ≤ 3.

Idea of the proof:

1 Show directly that ΠW has the property if W = An with
n ≤ 3 (or reference our later result!)

2 Reduce to the cases W = A4 and W = D4.

3 Substitute the algebra RA4 (which has all 2-cycles as
relations) for ΠA4 . This is a string algebra and has the same
torsion lattice as ΠA4 [BCZ19, Miz14].

4 Use the relationship between completability and mutation
[HI21] to find counterexamples for RA4 and ΠD4 .



Counterexample for RA4

1 2 3 4

The semibrick pair X =
2
3
4
t 4[1] t

3
2
1
[1] is pairwise completable but

not completable.

• Reason 1: Suppose a brick S or S [1] could be added to X .
Then using the vanishing conditions on Hom-sets in the
definition of a 2-SMC, every possibility for the socle of S can
be eliminated by checking few cases.

• Reason 2: Mutating at
2
3
4

yields
2
3
t

2
3
4
[1] t

3
2
1
[1] and, the map

3
2
1
→ 2

3
is neither mono nor epi.



Other known cases

Other known results about the pairwise completability property are
as follows:

Theorem
[H.-Igusa [HI21]] A (τ -tilting finite) gentle algebra whose quiver
contains no loops or 2-cycles has the pairwise 2-simple minded
completability property if and only if its quiver contains no vertex
of degree 3 or 4.



A Rank 3 Pattern Emerges

The counterexamples to the pairwise 2-simple minded
completability property in the our current and in [HI21] come from
semibrick pairs D t U [1] satisfying |D|+ |U| = 3 < rk(Λ). Our
next results offer an explanation as to why this is the case.

Theorem
Let Λ be any τ -tilting finite algebra. Then the following are
equivalent.

1 Λ has the pairwise 2-simple minded completability property.

2 Every pairwise completable semibrick pair D t U [1] which
satisfies |D|+ |U| = 3 is completable.



The importance of Rank 3

Theorem
Let Λ be any τ -tilting finite algebra. Then the following are
equivalent.

1 Λ has the pairwise 2-simple minded completability property.

2 Every pairwise completable semibrick pair D t U [1] which
satisfies |D|+ |U| = 3 is completable.

Theorem
Let Λ be a τ -tilting finite algebra with rk(Λ) ≤ 3. Then Λ has the
pairwise 2-simple minded completability property.



“Full-size” semibrick pairs

• The key to the rank 3 case was that if rk(Λ) = 3, then any
semibrick of size 3 is a 2-SMC.

Conjecture

Let Λ be a τ -tilting finite algebra of rank n. Then any semibrick
pair D t U [1] with |D|+ |U| = n is a 2-SMC.

• The converse is proven in [KY14].

• This conjecture would imply that rk(Λ) is an upper bound on
the size of a semibrick pair (when Λ is τ -tilting finite).
• This is (very) false in the τ -tilting infinite case:

• Over a tame hereditary algebra, any finite collection of
homogeneous bricks is a semibrick.

• Tame hereditary algebras can even have pairwise completable
semibrick pairs of size rk(Λ) which are not completable.



Evidence

Theorem
Let n ∈ N and let D t U [1] be a semibrick pair for ΠAn with
|D|+ |U| = n. Then D t U [1] is a 2-SMC.

Idea of the proof:

1 As before, we work over RAn instead of ΠAn .

2 The torsion lattice is isomorphic to the weak order on the
Coxeter group An (the group of permutations on n + 1 letters)
[BCZ19].

3 The canonical join representations (the bricks in D) and the
canonical meet representations (the bricks in U) are separately
encoded by arc diagrams [Rea15, BCZ19].

(continued on next slide)



Proof cont.

4 We define 2-colored arc diagrams to encode both sets of
bricks simultaneously and show a collection of n arcs always
defines a permutation in An (and hence a 2-SMC).



Thank you!!
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