Stability and tilts on triangulated categories

Jason Lo California State University, Northridge (CSUN), US

> FD Seminar Thursday, January 21, 2021

I. Equivalences of triangulated categories

Whenever we have an exact equivalence of triangulated categories

 $\Phi: \mathcal{D} \to \mathcal{U},$

a natural question is:

How do objects and structures behave under Φ ?

Examples of Φ :

- representation theory: tilting equivalances
- algebraic geometry: Fourier-Mukai transforms

Examples of 'objects and structures': t-structures, semistable objects, stability, moduli spaces, ...

Theorem 1 (Chindris)

Let A be a bound quiver algebra, T a basic tilting A-module, and θ an integral weight of A which is 'well-positioned' with respect to T. Let

$$F = \begin{cases} \operatorname{Hom}_{A}(T, -) & \text{if } \theta \text{-semistable } A \text{-modules are 'torsion'} \\ \operatorname{Ext}^{1}_{A}(T, -) & \text{if } \theta \text{-semistable } A \text{-modules are 'torsion-free'} \end{cases}$$

Let $B = \operatorname{End}_A(T)^{op}$ and $u : K(A) \to K(B)$ the isometry induced by the tilting module T. Then F defines an equivalence of categories

$$\operatorname{mod}(A)^{ss}_{\theta} \cong \operatorname{mod}(B)^{ss}_{\theta'}$$

where $\theta' = |\theta \circ u^{-1}|$.

In the theorem:

• We have a derived equivalence

$$\mathsf{RHom}_{\mathcal{A}}(\mathcal{T},-): D^b(\mathcal{A}\operatorname{-mod}) \to D^b(\mathcal{B}\operatorname{-mod}).$$

- Given a weight $\theta : \mathcal{K}(A \text{mod}) \to \mathbb{Z}$, an A-module M is θ -semistable if
 - $\theta(M) = 0.$
 - $\theta(M') \leq 0$ for all A-submodule M' of M.

 \rightarrow Chindris proceeded to use his theorem to construct singular moduli spaces of modules over a wild tilted algebra.

Theorem 2 (Atiyah, Tu, Polishchuk, Hein-Ploog)

Let X be an elliptic curve. The Fourier-Mukai transform

$$\Phi: D^b(\mathrm{Coh}(X)) \to D^b(\mathrm{Coh}(X))$$

with normalised Poincaré line bundle as the kernel takes a semistable sheaf on X to a semistable sheaf on X (up to a shift).

Semistability for coherent sheaves on X is determined by the slope function

$$\mu(E) := rac{\deg E}{\operatorname{rank} E} \qquad ext{for } E \in \operatorname{Coh}(X).$$

A coherent sheaf E on C is called (slope-)semistable if

• $\mu(E') \leq \mu(E)$ for all subsheaves E' of E.

Are these two results related?

	Theorem 1	Theorem 2
context	modules	sheaves
equivalence	tilting equivalence	Fourier-Mukai transform
homological dim	1	1
stability	heta-stability	slope stability

II. Ingredients for connecting Theorem 1 and Theorem 2

Ingredient 1: reformulate slope stability for sheaves

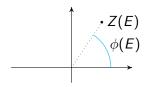
Recall: slope stability for sheaves uses $\mu(E) = \frac{\deg E}{\operatorname{rank} E}$ on $\operatorname{Coh}(X)$.

More generally, suppose \mathcal{A} is an abelian category with additive functions $C_0, C_1 : \mathcal{A} \to \mathbb{Z}$ such that, for any $E \in \mathcal{A}$,

- $C_0(E) \ge 0.$
- If $C_0(E) = 0$ then $C_1(E) \ge 0$.

Then $\mu(E) := \frac{C_1(E)}{C_0(E)}$ defines μ -stability for objects in \mathcal{A} . Equivalently, we can use the 'phase' function ϕ from

$$Z: \mathcal{K}(\mathcal{A}) \to \mathbb{C}: E \mapsto -C_1(E) + iC_0(E).$$



Then an object $E \in A$ is μ -semistable iff $\phi(E') \leq \phi(E)$ for all subobjects E'.

Any time we have an abelian category \mathcal{A} and a group homomorphism $Z : \mathcal{K}(\mathcal{A}) \to \mathbb{C}$ as above, if we fix an object $F \in \mathcal{A}$ with $Z(F) \neq 0$, we can construct a weight function $\theta_F : \mathcal{K}(\mathcal{A}) \to \mathbb{R}$ by setting

$$\theta_F(E) = \begin{vmatrix} \Re Z(F) & \Im Z(F) \\ \Re Z(E) & \Im Z(E) \end{vmatrix} = \text{ area of parallelogram}$$

$$Z(E) \cdot Z(F)$$

Lemma 3

For objects $E \in A$ with $Hom_{\mathcal{A}}(Z^{-1}(0), E) = 0$,

$${\sf E} \, \ {\sf is} \, heta_{{\sf F}} {\sf -semistable} \, \Leftrightarrow egin{cases} \phi({\sf E}) = \phi({\sf F}) \ {\sf E} \, \ {\sf is} \, \mu {\sf -semistable}. \end{cases}$$

Ingredient 2: tilting

In general, given the heart \mathcal{A} of a t-structure on a triangulated category \mathcal{D} , if $(\mathcal{T}, \mathcal{F})$ is a torsion pair in \mathcal{A} then

 $\mathcal{A}^{\dagger} := \langle \mathcal{F}[1], \mathcal{T}
angle$

is the heart of a t-structure on \mathcal{D} , referred to as the *tilt* of \mathcal{A} at $(\mathcal{T}, \mathcal{F})$.

Note that

$$\mathcal{A}^{\dagger} \subset \langle \mathcal{A} [1], \mathcal{A}
angle.$$

Conversely, any two hearts $\mathcal{A}^{\dagger}, \mathcal{A}$ satisfying such a relation are related by a tilt.

Given an exact equivalence $\Phi: D^b(\mathcal{A}_1) \to D^b(\mathcal{A}_2)$ such that

$$\Phi(\mathcal{A}_1) \subset \langle \mathcal{A}_2, \mathcal{A}_2[-1]
angle,$$

the heart $\Phi(\mathcal{A}_1)[1]$ is a *tilt* of \mathcal{A}_2 .

This means that there is a torsion pair $(\mathcal{T}, \mathcal{F})$ in \mathcal{A}_2 such that

$$\Phi(\mathcal{A}_1)[1] = \langle \mathcal{F}[1], \mathcal{T}
angle$$

in $D^b(\mathcal{A}_2)$.

The equivalences in Theorems 1 and 2 both fall into this setting with A_1, A_2 being hearts of standard t-structures.

III. Configurations of equivalences, t-structures, and stability conditions

Definition 4 (Configuration I)

- ${\mathcal{D}}$ triangulated category, ${\mathcal{A}}$ heart of bounded t-structure
- $(\mathcal{T},\mathcal{F})$ torsion pair in \mathcal{A}
- (R, \preceq) totally ordered abelian group
- $S, S' : K(\mathcal{D}) \to R$ group homomorphisms with sign compatibility

$$(*) \qquad \operatorname{sgn} \mathcal{S}(E) = \operatorname{sgn} \mathcal{S}'(E) ext{ for any } E \in \mathcal{T} ext{ or } \mathcal{F}.$$

 $\mathcal{A}^{\dagger}:=\langle \mathcal{F}[1],\mathcal{T}\rangle.$

We say S satisfies refinement-i with respect to $(\mathcal{T}, \mathcal{F})$ if:

- Every nonzero S-semistable object in \mathcal{A} lies in $\mathcal{A} \cap (\mathcal{A}^{\dagger}[-i])$
- Every nonzero $G \in \mathcal{A} \cap (\mathcal{A}^{\dagger}[i-1])$ satisfies $(-1)^{i} \operatorname{sgn} S(G) = -1.$

Refinement-i mimics Chindris' 'well-positioned'.

Theorem 5

Assume Configuration I. Suppose S satisfies refinement-i for i = 0 or 1. Then for any object $E \in D$,

E is *S*-semistable in $\mathcal{A} \iff E[i]$ is $(-1)^i S'$ -semistable in \mathcal{A}^{\dagger} .

Proof of i = 0 and \Rightarrow . Suppose *E* is *S*-semistable in \mathcal{A} ($\Rightarrow S(E) = 0$). Refinement-0 means $E \in \mathcal{T}$ and every $0 \neq G \in \mathcal{F}$ has $S(G) \prec 0$. So objects in \mathcal{F} have the "right" sign: $S(E) = 0 \succ S(G)$ while $\operatorname{Hom}_{\mathcal{A}}(E, G) = 0$. Take \mathcal{A}^{\dagger} -ses $0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0$ then \mathcal{A} -les:

$$0 \to \mathcal{H}^{-1}_{\mathcal{A}}(N) \to M \stackrel{\alpha}{\to} E \to \mathcal{H}^0_{\mathcal{A}}(N) \to 0.$$

 $\mathcal{H}_{\mathcal{A}}^{-1}(M) = 0$ so $M \in \mathcal{T}$. S-semistability of E gives $S(\operatorname{im} \alpha) \preceq 0$. If $\mathcal{H}_{\mathcal{A}}^{-1}(N) \neq 0$, then refinement-0 on $\mathcal{H}_{\mathcal{A}}^{-1}(N)$ gives $S(M) \preceq 0$. If $\mathcal{H}_{\mathcal{A}}^{-1}(N) = 0$, then S-semistability of E gives $S(M) \preceq 0$. Sign compatibility in Configuration I now gives $S'(M) \preceq 0$.

Definition 6 (Configuration II)

- (R, \preceq) totally ordered abelian group.
- (a) $\Phi : \mathcal{D} \to \mathcal{U}$ and $\Psi : \mathcal{U} \to \mathcal{D}$ exact equivalences of triangulated categories satisfying $\Psi \Phi \cong id_{\mathcal{D}}[-1]$ and $\Phi \Psi \cong id_{\mathcal{U}}[-1]$.
- (b) \mathcal{A}, \mathcal{B} are hearts of t-structures on \mathcal{D}, \mathcal{U} , respectively, such that $\Phi \mathcal{A} \subset \langle \mathcal{B}, \mathcal{B}[-1] \rangle$.
- (c) $S_A: K(\mathcal{D}) \to R$ and $S_B: K(\mathcal{U}) \to R$ are group homomorphisms such that

$$\operatorname{sgn} S_{\mathcal{A}}(E) = \operatorname{sgn} S_{\mathcal{B}}(\Phi E)$$

for any $E \in \mathcal{A}$ that is either $\Phi_{\mathcal{B}}$ -WIT₀ or $\Phi_{\mathcal{B}}$ -WIT₁.

Can convert between Configuration I and Configuration II.

Theorem 7

Assume Configuration II. Suppose the weight function S_A satisfies refinement-*i* with respect to the torsion pair $(W_{0,\Phi,A,\mathcal{B}}, W_{1,\Phi,A,\mathcal{B}})$. Then for any $E \in \mathcal{D}$,

E is $S_{\mathcal{A}}$ -semistable in $\mathcal{A} \Leftrightarrow (\Phi[i])(E)$ is $(-1)^i S_{\mathcal{B}}$ -semistable in \mathcal{B} .

Recovers Theorem 1 when

- $\mathcal{D} = D^b(A \text{mod})$ for bound quiver algebra A
- \$\mathcal{U} = D^b(B-mod)\$ where \$B = End(\$T\$)^{op}\$, for \$T\$ basic tilting module over \$A\$
- $\mathcal{A} = \mathcal{A} \text{mod}$ and $\mathcal{B} = \mathcal{B} \text{mod}$
- $\Phi = \mathsf{RHom}(T, -)$
- $\Psi = (T \overset{L}{\otimes} -)[-1]$
- $S_{\mathcal{A}} = \theta, S_{\mathcal{B}} = \theta \circ u^{-1}$

What about Theorem 2?

We saw that slope stability for sheaves on an elliptic curve X could be reformulated using

$$Z: \mathcal{K}(\mathrm{Coh}(X)) \to \mathbb{C}: -\mathrm{deg}\,(E) + i\mathrm{rank}\,(E).$$

Stability in algebraic geometry is often defined via group homomorphisms such as

- Z : K(D) → C (Bridgeland stability or 'weak' stability such as slope stability on surfaces), or
- $Z: \mathcal{K}(\mathcal{D}) \to \mathbb{C}((\frac{1}{v}))^c$ (Bayer's polynomial stability, extended)

Definition 8 (Configuration III)

- (a) $\Phi : \mathcal{D} \to \mathcal{U}$ and $\Psi : \mathcal{U} \to \mathcal{D}$ exact equivalences of triangulated categories satisfying $\Psi \Phi \cong id_{\mathcal{D}}[-1]$ and $\Phi \Psi \cong id_{\mathcal{U}}[-1]$.
- (b) \mathcal{A}, \mathcal{B} are hearts of t-structures on \mathcal{D}, \mathcal{U} , respectively, such that $\Phi \mathcal{A} \subset \langle \mathcal{B}, \mathcal{B}[-1] \rangle$.
- (c) There exist weak polynomial stability functions $Z_{\mathcal{A}}: \mathcal{K}(\mathcal{D}) \to \mathbb{C}((\frac{1}{v}))^c$ and $Z_{\mathcal{B}}: \mathcal{K}(\mathcal{U}) \to \mathbb{C}((\frac{1}{v}))^c$ on \mathcal{A}, \mathcal{B} , respectively, and some $\mathcal{T} \in \mathrm{GL}^{I,+}(2, \mathbb{R}((\frac{1}{v}))^c)$ such that

commutes.

Note: In all of Configurations I, II and III, Harder-Narasimhan property is *not* needed.

Theorem 9

Assume Configuration III. Then for any $E \in A$,

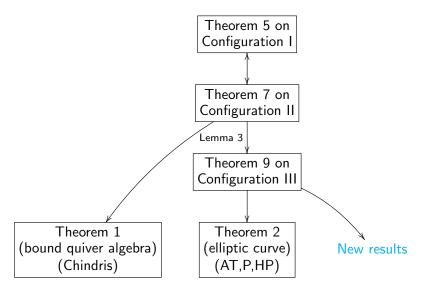
E is Z_A -semistable in $A \Leftrightarrow \Phi E$ (up to shift) is Z_B -semistable in B.

Recovers Theorem 2 when

- $\mathcal{D} = \mathcal{U} = D^b(\operatorname{Coh}(X))$ where X is elliptic curve
- $\mathcal{A} = \mathcal{B} = \operatorname{Coh}(X)$
- Φ is Fourier-Mukai transform with Poincaré line bundle as kernel, Ψ is 'dual' functor
- $Z_{\mathcal{A}} = Z_{\mathcal{B}}$ is $K(\operatorname{Coh}(X)) \to \mathbb{C} : -\operatorname{deg}(E) + i\operatorname{rank}(E)$

This seems to suggest, that given the Poincaré bundle, preservation of stability under the FMT is largely a "homological" result.

Family tree:



In closing,

IV. Applications in algebraic geometry

New results on Weierstraß elliptic surfaces X: $\Phi: D^b(\operatorname{Coh}(X)) \to D^b(\operatorname{Coh}(X))$ is relative Fourier-Mukai transform with normalised relative Poincaré sheaf as kernel.

