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I. Equivalences of triangulated categories
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Whenever we have an exact equivalence of triangulated categories

Φ : D → U ,

a natural question is:

How do objects and structures behave under Φ?

Examples of Φ:

• representation theory: tilting equivalances

• algebraic geometry: Fourier-Mukai transforms

Examples of ‘objects and structures’: t-structures, semistable
objects, stability, moduli spaces, ...
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Theorem 1 (Chindris)

Let A be a bound quiver algebra, T a basic tilting A-module, and
θ an integral weight of A which is ‘well-positioned’ with respect to
T . Let

F =

{
HomA(T ,−) if θ-semistable A-modules are ‘torsion’

Ext1
A(T ,−) if θ-semistable A-modules are ‘torsion-free’

.

Let B = EndA(T )op and u : K (A)→ K (B) the isometry induced
by the tilting module T . Then F defines an equivalence of
categories

mod(A)ssθ
∼= mod(B)ssθ′

where θ′ = |θ ◦ u−1|.
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In the theorem:

• We have a derived equivalence

RHomA(T ,−) : Db(A−mod)→ Db(B−mod).

• Given a weight θ : K (A−mod)→ Z, an A-module M is
θ-semistable if
• θ(M) = 0.
• θ(M ′) ≤ 0 for all A-submodule M ′ of M.

→ Chindris proceeded to use his theorem to construct singular
moduli spaces of modules over a wild tilted algebra.
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Theorem 2 (Atiyah, Tu, Polishchuk, Hein-Ploog)

Let X be an elliptic curve. The Fourier-Mukai transform

Φ : Db(Coh(X ))→ Db(Coh(X ))

with normalised Poincaré line bundle as the kernel takes a
semistable sheaf on X to a semistable sheaf on X (up to a shift).

Semistability for coherent sheaves on X is determined by the slope
function

µ(E ) :=
deg E

rankE
for E ∈ Coh(X ).

A coherent sheaf E on C is called (slope-)semistable if

• µ(E ′) ≤ µ(E ) for all subsheaves E ′ of E .
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Are these two results related?

Theorem 1 Theorem 2

context modules sheaves
equivalence tilting equivalence Fourier-Mukai transform

homological dim 1 1
stability θ-stability slope stability
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II. Ingredients for connecting
Theorem 1 and Theorem 2
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Ingredient 1: reformulate slope stability for sheaves
Recall: slope stability for sheaves uses µ(E ) = deg E

rankE on Coh(X ).

More generally, suppose A is an abelian category with additive
functions C0,C1 : A → Z such that, for any E ∈ A,
• C0(E ) ≥ 0.
• If C0(E ) = 0 then C1(E ) ≥ 0.

Then µ(E ) := C1(E)
C0(E) defines µ-stability for objects in A.

Equivalently, we can use the ‘phase’ function φ from

Z : K (A)→ C : E 7→ −C1(E ) + iC0(E ).

Z (E )

φ(E )

Then an object E ∈ A is µ-semistable iff φ(E ′) ≤ φ(E ) for all
subobjects E ′.
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Any time we have an abelian category A and a group
homomorphism Z : K (A)→ C as above, if we fix an object F ∈ A
with Z (F ) 6= 0, we can construct a weight function
θF : K (A)→ R by setting

θF (E ) =

∣∣∣∣<Z (F ) =Z (F )
<Z (E ) =Z (E )

∣∣∣∣ = area of parallelogram

Z (F )

Z (E )

Lemma 3

For objects E ∈ A with HomA(Z−1(0),E ) = 0,

E is θF -semistable ⇔

{
φ(E ) = φ(F )

E is µ-semistable.

Also works for Bridgeland stability, Bayer’s polynomial stability.

Construction in Rudakov.
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Ingredient 2: tilting

In general, given the heart A of a t-structure on a triangulated
category D, if (T ,F) is a torsion pair in A then

A† := 〈F [1], T 〉

is the heart of a t-structure on D, referred to as the tilt of A at
(T ,F).

Note that
A† ⊂ 〈A[1],A〉.

Conversely, any two hearts A†,A satisfying such a relation are
related by a tilt.
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Given an exact equivalence Φ : Db(A1)→ Db(A2) such that

Φ(A1) ⊂ 〈A2,A2[−1]〉,

the heart Φ(A1)[1] is a tilt of A2.

This means that there is a torsion pair (T ,F) in A2 such that

Φ(A1)[1] = 〈F [1], T 〉

in Db(A2).

The equivalences in Theorems 1 and 2 both fall into this setting
with A1,A2 being hearts of standard t-structures.
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III. Configurations of
equivalences, t-structures, and stability conditions
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Definition 4 (Configuration I)

• D triangulated category, A heart of bounded t-structure

• (T ,F) torsion pair in A
• (R,�) totally ordered abelian group

• S ,S ′ : K (D)→ R group homomorphisms with sign
compatibility

(∗) sgnS(E ) = sgn S ′(E ) for any E ∈ T or F .

A† := 〈F [1], T 〉.

We say S satisfies refinement-i with respect to (T ,F) if:

• Every nonzero S-semistable object in A lies in A ∩ (A†[−i ])
• Every nonzero G ∈ A ∩ (A†[i − 1]) satisfies

(−1)isgnS(G ) = −1.

Refinement-i mimics Chindris’ ‘well-positioned’.
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Theorem 5

Assume Configuration I. Suppose S satisfies refinement-i for i = 0
or 1. Then for any object E ∈ D,

E is S-semistable in A ⇔ E [i ] is (−1)iS ′-semistable in A†.

Proof of i = 0 and ⇒. Suppose E is S-semistable in A
(⇒ S(E ) = 0). Refinement-0 means E ∈ T and every 0 6= G ∈ F
has S(G ) ≺ 0. So objects in F have the ”right” sign:
S(E ) = 0 � S(G ) while HomA(E ,G ) = 0.
Take A†-ses 0→ M → E → N → 0 then A-les:

0→ H−1
A (N)→ M

α→ E → H0
A(N)→ 0.

H−1
A (M) = 0 so M ∈ T . S-semistability of E gives S(imα) � 0.

If H−1
A (N) 6= 0, then refinement-0 on H−1

A (N) gives S(M) � 0.
If H−1

A (N) = 0, then S-semistability of E gives S(M) � 0.
Sign compatibility in Configuration I now gives S ′(M) � 0. �
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Definition 6 (Configuration II)

(R,�) totally ordered abelian group.

(a) Φ : D → U and Ψ : U → D exact equivalences of triangulated
categories satisfying ΨΦ ∼= idD[−1] and ΦΨ ∼= idU [−1].

(b) A,B are hearts of t-structures on D,U , respectively, such that
ΦA ⊂ 〈B,B[−1]〉.

(c) SA : K (D)→ R and SB : K (U)→ R are group
homomorphisms such that

sgnSA(E ) = sgnSB(ΦE )

for any E ∈ A that is either ΦB-WIT0 or ΦB-WIT1.

Can convert between Configuration I and Configuration II.
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Theorem 7

Assume Configuration II. Suppose the weight function SA satisfies
refinement-i with respect to the torsion pair (W0,Φ,A,B,W1,Φ,A,B).
Then for any E ∈ D,

E is SA-semistable in A ⇔ (Φ[i ])(E ) is (−1)iSB-semistable in B.

Recovers Theorem 1 when

• D = Db(A−mod) for bound quiver algebra A

• U = Db(B−mod) where B = End(T )op, for T basic tilting
module over A

• A = A−mod and B = B−mod

• Φ = RHom(T ,−)

• Ψ = (T
L
⊗−)[−1]

• SA = θ,SB = θ ◦ u−1
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What about Theorem 2?

We saw that slope stability for sheaves on an elliptic curve X could
be reformulated using

Z : K (Coh(X ))→ C : −deg (E ) + irank (E ).

Stability in algebraic geometry is often defined via group
homomorphisms such as

• Z : K (D)→ C (Bridgeland stability or ‘weak’ stability such as
slope stability on surfaces), or

• Z : K (D)→ C(( 1
v ))c (Bayer’s polynomial stability, extended)
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Definition 8 (Configuration III)

(a) Φ : D → U and Ψ : U → D exact equivalences of triangulated
categories satisfying ΨΦ ∼= idD[−1] and ΦΨ ∼= idU [−1].

(b) A,B are hearts of t-structures on D,U , respectively, such that
ΦA ⊂ 〈B,B[−1]〉.

(c) There exist weak polynomial stability functions
ZA : K (D)→ C(( 1

v ))c and ZB : K (U)→ C(( 1
v ))c on A,B,

respectively, and some T ∈ GLl ,+(2,R(( 1
v ))c) such that

K (D)
ΦK

//

ZA
��

K (U)

ZB
��

C(( 1
v ))c

T // C(( 1
v ))c

commutes.

Note: In all of Configurations I, II and III, Harder-Narasimhan
property is not needed.
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Theorem 9

Assume Configuration III. Then for any E ∈ A,

E is ZA-semistable in A ⇔ ΦE (up to shift) is ZB-semistable in B.

Recovers Theorem 2 when

• D = U = Db(Coh(X )) where X is elliptic curve

• A = B = Coh(X )

• Φ is Fourier-Mukai transform with Poincaré line bundle as
kernel, Ψ is ‘dual’ functor

• ZA = ZB is K (Coh(X ))→ C : −deg (E ) + irank (E )

This seems to suggest, that given the Poincaré bundle, preservation
of stability under the FMT is largely a “homological” result.
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Family tree:

Theorem 5 on
Configuration IOO

��
Theorem 7 on

Configuration II

Lemma 3
��

��

Theorem 9 on
Configuration III

��
��Theorem 1

(bound quiver algebra)
(Chindris)

Theorem 2
(elliptic curve)

(AT,P,HP)
New results
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In closing,

IV. Applications in algebraic geometry
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New results on Weierstraß elliptic surfaces X :

Φ : Db(Coh(X ))→ Db(Coh(X )) is relative Fourier-Mukai
transform with normalised relative Poincaré sheaf as kernel.

Theorem 9 on
Configuration III

�� &&
Bridgeland stab

Φ · σω,B
= σω,B · (T , g)

,,

��

polynomial stab
Φ · σl

= σl · (T̄ , ḡ)

$$

Bridgeland stab
mini-walls

on rays (LQ)

��
Aut(Db(X )) acts

on Stab†(Db(X ))
for κ 6= 0

Bridgeland stab
mini-walls

on hyperbolas
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