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Enhancements

Let k be a ground field, T triangulated category, and Σ: T ∼→ T
its shift functor ΣX = X[1], a.k.a. suspension.

An enhancement is a DG-category A such that

Dc(A) ' T .

A Morita equivalence is a DG-functor A → B which induces an
equivalence Dc(A) → Dc(B).

Problem: existence and uniqueness of enhancements up to
Morita equivalence.
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A toy example

Let T be the category of finite-dimensional C-vector spaces
and Σ = id.

Exact triangles are 3-periodic long exact sequences

V0 V1

V2

An enhancement is C〈t±1〉 with |t| = 1.

Is it unique?
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A toy example

Any enhancement is Morita equivalent to a pre-triangulated
one A,

H0(A)
∼−→ Dc(A) ' T .

If the object C of A maps to C in T , then A is Morita equivalent
to the DG-algebra A = A(C, C), which must satisfy

H∗(A) ∼= TΣ(C,C) = C〈t±1〉.

Here TΣ is the graded category with the same objects as T and

TΣ(X, Y)n = T (X,ΣnY).
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A toy example

An easy Hochschild cohomology computation yields

HH?,∗(C〈t±1〉) = HH?(C)[t±2, δ], |t| = (0, 2), |δ| = (1, 0).

This apparently vanishes for ? ≥ 3, hence C〈t±1〉 is
quasi-isomorphic to A, so we get uniqueness... except that we
didn’t specify k!

We definitely get uniqueness over k = C or R.

What about k = Q? UNKNOWN!
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An example by [Rizzardo and Van den Bergh, 2019]

Let T = mod(k)×mod(k) and let Σ be the twist.

Exact triangles are 6-periodic long exact sequences,

(V0, V3) (V1, V4)

(V2, V5)
+1

V0 V1

V5 V2

V4 V3

If k = `(x1, x2, x3) for ` a field of char ` = 0 then T has
non-Morita equivalent enhancements over `.
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An example by [Amiot, 2007]

Let char k = 2 and let T = proj(Λ) be the category of
finitely-generated projective right modules over the following
deformed preprojective algebra Λ,

0

2 3

1

a0

a2ā0

ā1

ā2a1

over an algebraically closed field of characteristic 2 by the
two-sided ideal generated by

ā0a0, ā1a1, a2ā2, a0ā0 + a1ā1 + ā2a2+a1ā1a0ā0,
a0ā0a1ā1 + a1ā1a0ā0.
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An example by [Amiot, 2007]

Using a Λ-bimodule exact sequence by [Białkowski et al., 2007]

1Λσ−1 ↪→ P2 → P1 → P0 � Λ,

with Pi projective, i.e. Ω3Λenv(Λ) = 1Λσ−1 . Amiot defined a
triangulated structure in T with Σ the restriction of scalars
along σ : Λ ∼= Λ and exact triangles

M⊗Λ (P2 → P2 → P0 → 1(P2)σ).

Here M runs over the finitely generated Λ-modules.

No enhancements were known.
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Finite additive categories

An additive category T is finite if it is idempotent-complete,
dim T (X, Y) < ∞ for any pair of objetcs, and there are finitely
many indecomposables.

This is the same as having an equivalence T ' proj(Λ) for Λ a
finite-dimensional basic algebra.

By [Freyd, 1966], if T is triangulated then Λ is self-injective.
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Examples of finite triangulated categories

• mod(A) for A a finite-dimensional algebra of finite
representation type.

• MCM(R) for R a commutative complete local ring of finite
Cohen–Macaulay representation type.

• Orbit categories Db(kQ)/FZ for Q a Dynkin quiver and F an
appropriate self-equivalence.

• The non-standard finite 1-Calabi–Yau categories of
[Amiot, 2007], based on [Białkowski et al., 2007].
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Structure theorems

For k algebraically closed.

• [Xiao and Zhu, 2005] computed the Auslander-Reiter
quivers of finite triangulated categories.

• [Amiot, 2007] showed that in may cases T is equivalent to
an orbit category as an additive category.

• [Keller, 2018] further showed that the previous equivalence
is triangulated.
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Previously known

Theorem [Hanihara, 2020]

Suppose k is a perfect field, Λ is a self-injective basic
f.d. algebra, and T ' proj(Λ). Then T has a Puppe triangulated
structure if and only if Ω3Λenv(Λ) is stably isomorphic to an
invertible Λ-bimodule.

Invertible Λ-bimodules are of the form 1Λσ−1 .

Warning! The given triangulated structure on T need not
coincide with the one produced by Amiot’s technique.
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Main result, connected case

An enhanced triangulated structure on an additive category T
consists of a DG-category A and an equivalence

Dc(A) ' T .

Theorem [Muro, 2020]

Suppose k is a perfect field, Λ is a connected non-separable
self-injective basic f.d. algebra, and T ' proj(Λ).Then T has an
enhanced triangulated structure if and only if Ω3Λenv(Λ) is an
invertible Λ-bimodule.In that case, Σ−1 = −⊗Λ Ω3Λenv(Λ).
Moreover, the enhancement is unique up to Morita
equivalence.
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Main result, connected case

In the previous theorem, the underlying triangulated structure
coincides with the one derived from Amiot’s technique, so we
obtain the following consequence.

Corollary

Amiot’s non-standard finite 1-Calabi–Yau triangulated
categories have enhancements.
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Main result, general case

If T is an additive category and Σ: T ∼→ T is a
self-equivalence, an enhanced triangulated structure on
(T ,Σ) consists of a DG-category A and an equivalence

Dc(A) ' T

compatible with the suspension functors.
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Main result, general case

Theorem [Muro, 2020]

Suppose k is a perfect field, Λ is a self-injective basic
f.d. algebra, and T ' proj(Λ):

1. T has an enhanced triangulated structure if and only if
Ω3Λenv(Λ) is stably isomorphic to an invertible Λ-bimodule.

2. The possible suspension functors Σ: T → T are
Σ ∼= −⊗Λ I with I−1 ∼= Ω3Λenv(Λ) in mod(Λenv).

3. If we fix Σ as above, any two enhanced triangulated
structures on (T ,Σ) are Morita equivalent.
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Main result, general case

The following obvious consquence is connected to the
example of [Rizzardo and Van den Bergh, 2019].

Corollary

If Λ is separable, then the enhanced triangulated structures on
T are parametrized by Out(Λ).
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Ideas from the proof

We consider the exact sequence of Λ-bimodules

I−1 = 1Λσ−1 ↪→ P2 → P1 → P0 � Λ

with Pi projective as an element

η ∈ HH3(Λ, I−1).

If we define Λσ =
⊕

n∈Z I⊗
n , its degree 0 part is Λ and

HH3(Λ, I−1) = HH3,−1(Λ,Λσ).
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Ideas from the proof

Since Λ is self-injective, we can consider Hochchild-Tate
cohomology

ĤH
?,∗

(Λ,Λσ).

Since the Pi are projective, η is a unit of degree (3,−1).

We have morphisms

HH?,∗(Λσ,Λσ) −→ HH?,∗(Λ,Λσ) −→ ĤH
?,∗

(Λ,Λσ).

The first one is induced by the inclusion Λ ⊂ Λσ and the
second one is the comparison map.
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Ideas from the proof

Using that η is a unit in the target, we lift it to the source by a
unique class {m3} satisfying

1
2
[{m3}, {m3}] = 0

if char k 6= 2 or more generally

Sq({m3}) = 0.

We then show by means of an obstruction theory that the
cocycle m3 extends to a minimal A∞-structure (Λσ,m3,m4 . . . ).

A DG-enhancement of this A∞-algebra enhances T .
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Some questions

• How to obtain an explicit DG- or A∞-enhancement?
• What happens in the locally finite case?
• What if k is not perfect?
• And if k is not even a field?
• Is there any finite triangulated category without
enhancements, or even more, where the octahedral axiom
fails?
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This is the end

That’s all, thanks! ,
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