

Finite triangulated categories and DG-enhancements

Fernando Muro 10 December 2020

Universidad de Sevilla

Let *k* be a ground field, \mathcal{T} triangulated category, and $\Sigma : \mathcal{T} \xrightarrow{\sim} \mathcal{T}$ its shift functor $\Sigma X = X[1]$, a.k.a. suspension.

An enhancement is a DG-category ${\mathcal A}$ such that

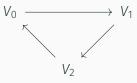
 $D^{c}(\mathcal{A})\simeq \mathcal{T}.$

A Morita equivalence is a DG-functor $\mathcal{A} \to \mathcal{B}$ which induces an equivalence $D^{c}(\mathcal{A}) \to D^{c}(\mathcal{B})$.

Problem: existence and uniqueness of enhancements up to Morita equivalence.

Let $\mathcal T$ be the category of finite-dimensional $\mathbb C\text{-vector}$ spaces and $\Sigma=\text{id}.$

Exact triangles are 3-periodic long exact sequences



An enhancement is $\mathbb{C}\langle t^{\pm 1} \rangle$ with |t| = 1.

Is it unique?

Any enhancement is Morita equivalent to a pre-triangulated one $\ensuremath{\mathcal{A}}$,

$$H^0(\mathcal{A}) \stackrel{\sim}{\longrightarrow} D^c(\mathcal{A}) \simeq \mathcal{T}.$$

If the object C of A maps to \mathbb{C} in \mathcal{T} , then A is Morita equivalent to the DG-algebra $A = \mathcal{A}(C, C)$, which must satisfy

$$H^*(A) \cong \mathcal{T}_{\Sigma}(\mathbb{C}, \mathbb{C}) = \mathbb{C}\langle t^{\pm 1} \rangle.$$

Here \mathcal{T}_Σ is the graded category with the same objects as $\mathcal T$ and

$$\mathcal{T}_{\Sigma}(X,Y)^n = \mathcal{T}(X,\Sigma^nY).$$

An easy Hochschild cohomology computation yields

$$HH^{\star,*}(\mathbb{C}\langle t^{\pm 1}\rangle) = HH^{\star}(\mathbb{C})[t^{\pm 2}, \delta], \qquad |t| = (0, 2), \quad |\delta| = (1, 0).$$

This apparently vanishes for $\star \geq 3$, hence $\mathbb{C}\langle t^{\pm 1} \rangle$ is quasi-isomorphic to A, so we get uniqueness... except that we didn't specify k!

We definitely get uniqueness over $k = \mathbb{C}$ or \mathbb{R} .

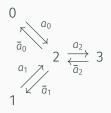
What about $k = \mathbb{Q}$? **UNKNOWN!**

Let $T = mod(k) \times mod(k)$ and let Σ be the twist. Exact triangles are 6-periodic long exact sequences,

If $k = \ell(x_1, x_2, x_3)$ for ℓ a field of char $\ell = 0$ then \mathcal{T} has non-Morita equivalent enhancements over ℓ .

An example by [Amiot, 2007]

Let char k = 2 and let $\mathcal{T} = \text{proj}(\Lambda)$ be the category of finitely-generated projective right modules over the following deformed preprojective algebra Λ ,



over an algebraically closed field of characteristic 2 by the two-sided ideal generated by

 $\bar{a}_0 a_0, \quad \bar{a}_1 a_1, \quad a_2 \bar{a}_2, \quad a_0 \bar{a}_0 + a_1 \bar{a}_1 + \bar{a}_2 a_2 + a_1 \bar{a}_1 a_0 \bar{a}_0, \\ a_0 \bar{a}_0 a_1 \bar{a}_1 + a_1 \bar{a}_1 a_0 \bar{a}_0.$

Using a Λ -bimodule exact sequence by [Białkowski et al., 2007]

$${}_{1}\Lambda_{\sigma^{-1}} \hookrightarrow P_2 \to P_1 \to P_0 \twoheadrightarrow \Lambda,$$

with P_i projective, i.e. $\Omega^3_{\Lambda^{env}}(\Lambda) = {}_1\Lambda_{\sigma^{-1}}$. Amiot defined a triangulated structure in \mathcal{T} with Σ the restriction of scalars along $\sigma \colon \Lambda \cong \Lambda$ and exact triangles

$$M \otimes_{\Lambda} (P_2 \to P_2 \to P_0 \to {}_1(P_2)_{\sigma}).$$

Here *M* runs over the finitely generated Λ -modules.

No enhancements were known.

- An additive category \mathcal{T} is **finite** if it is idempotent-complete, dim $\mathcal{T}(X, Y) < \infty$ for any pair of objetcs, and there are finitely many indecomposables.
- This is the same as having an equivalence $\mathcal{T} \simeq \text{proj}(\Lambda)$ for Λ a finite-dimensional basic algebra.
- By [Freyd, 1966], if ${\mathcal T}$ is triangulated then Λ is self-injective.

Examples of finite triangulated categories

- <u>mod(</u>*A*) for *A* a finite-dimensional algebra of finite representation type.
- <u>MCM(R)</u> for *R* a commutative complete local ring of finite Cohen–Macaulay representation type.
- Orbit categories $D^{b}(kQ)/F^{\mathbb{Z}}$ for Q a Dynkin quiver and F an appropriate self-equivalence.
- The non-standard finite 1-Calabi–Yau categories of [Amiot, 2007], based on [Białkowski et al., 2007].

For *k* algebraically closed.

- [Xiao and Zhu, 2005] computed the Auslander-Reiter quivers of finite triangulated categories.
- [Amiot, 2007] showed that in may cases ${\cal T}$ is equivalent to an orbit category as an additive category.
- [Keller, 2018] further showed that the previous equivalence is triangulated.

Theorem [Hanihara, 2020]

Suppose k is a perfect field, Λ is a self-injective basic f.d. algebra, and $\mathcal{T} \simeq \operatorname{proj}(\Lambda)$. Then \mathcal{T} has a Puppe triangulated structure if and only if $\Omega^3_{\Lambda^{env}}(\Lambda)$ is stably isomorphic to an invertible Λ -bimodule.

Invertible Λ -bimodules are of the form $_1\Lambda_{\sigma^{-1}}$.

Warning! The given triangulated structure on \mathcal{T} need not coincide with the one produced by Amiot's technique.

An enhanced triangulated structure on an additive category ${\cal T}$ consists of a DG-category ${\cal A}$ and an equivalence

 $D^{c}(\mathcal{A})\simeq \mathcal{T}.$

Theorem [Muro, 2020]

Suppose k is a perfect field, Λ is a connected non-separable self-injective basic f.d. algebra, and $\mathcal{T} \simeq \operatorname{proj}(\Lambda)$. Then \mathcal{T} has an enhanced triangulated structure if and only if $\Omega^3_{\Lambda^{env}}(\Lambda)$ is an invertible Λ -bimodule. In that case, $\Sigma^{-1} = - \otimes_{\Lambda} \Omega^3_{\Lambda^{env}}(\Lambda)$. Moreover, the enhancement is unique up to Morita equivalence.

In the previous theorem, the underlying triangulated structure coincides with the one derived from Amiot's technique, so we obtain the following consequence.

Corollary

Amiot's non-standard finite 1-Calabi–Yau triangulated categories have enhancements.

If \mathcal{T} is an additive category and $\Sigma \colon \mathcal{T} \xrightarrow{\sim} \mathcal{T}$ is a self-equivalence, an **enhanced triangulated structure** on (\mathcal{T}, Σ) consists of a DG-category \mathcal{A} and an equivalence

 $D^c(\mathcal{A})\simeq \mathcal{T}$

compatible with the suspension functors.

Theorem [Muro, 2020]

Suppose k is a perfect field, Λ is a self-injective basic f.d. algebra, and $\mathcal{T} \simeq \operatorname{proj}(\Lambda)$:

- 1. \mathcal{T} has an enhanced triangulated structure if and only if $\Omega^3_{\Lambda^{env}}(\Lambda)$ is stably isomorphic to an invertible Λ -bimodule.
- 2. The possible suspension functors $\Sigma : \mathcal{T} \to \mathcal{T}$ are $\Sigma \cong \otimes_{\Lambda} I$ with $I^{-1} \cong \Omega^3_{\Lambda^{env}}(\Lambda)$ in $\underline{mod}(\Lambda^{env})$.
- If we fix Σ as above, any two enhanced triangulated structures on (T, Σ) are Morita equivalent.

The following obvious consquence is connected to the example of [Rizzardo and Van den Bergh, 2019].

Corollary

If Λ is separable, then the enhanced triangulated structures on \mathcal{T} are parametrized by $Out(\Lambda)$.

We consider the exact sequence of Λ -bimodules

$$I^{-1} = {}_{1}\Lambda_{\sigma^{-1}} \hookrightarrow P_2 \to P_1 \to P_0 \twoheadrightarrow \Lambda$$

with P_i projective as an element

$$\eta \in HH^3(\Lambda, I^{-1}).$$

If we define $\Lambda^{\sigma} = \bigoplus_{n \in \mathbb{Z}} I^{\otimes^n}$, its degree 0 part is Λ and $HH^3(\Lambda, I^{-1}) = HH^{3,-1}(\Lambda, \Lambda^{\sigma}).$ Since Λ is self-injective, we can consider Hochchild-Tate cohomology

 $\widehat{HH}^{\star,*}(\Lambda,\Lambda^{\sigma}).$

Since the P_i are projective, η is a unit of degree (3, -1).

We have morphisms

$$HH^{\star,*}(\Lambda^{\sigma},\Lambda^{\sigma})\longrightarrow HH^{\star,*}(\Lambda,\Lambda^{\sigma})\longrightarrow \widehat{HH}^{\star,*}(\Lambda,\Lambda^{\sigma}).$$

The first one is induced by the inclusion $\Lambda \subset \Lambda^{\sigma}$ and the second one is the comparison map.

Using that η is a unit in the target, we lift it to the source by a unique class $\{m_3\}$ satisfying

$$\frac{1}{2}[\{m_3\},\{m_3\}]=0$$

if char $k \neq 2$ or more generally

 $\mathsf{Sq}(\{m_3\})=0.$

We then show by means of an obstruction theory that the cocycle m_3 extends to a minimal A_∞ -structure ($\Lambda^\sigma, m_3, m_4...$). A DG-enhancement of this A_∞ -algebra enhances \mathcal{T} .

- How to obtain an explicit DG- or A_{∞} -enhancement?
- What happens in the *locally finite* case?
- What if *k* is not perfect?
- And if *k* is not even a field?
- Is there any finite triangulated category without enhancements, or even more, where the octahedral axiom fails?

That's all, thanks! 🙂

References

Amiot, C. (2007).

On the structure of triangulated categories with finitely many indecomposables.

Bull. Soc. Math. France, 135(3):435–474.

Białkowski, J., Erdmann, K., and Skowroński, A. (2007).
Deformed preprojective algebras of generalized Dynkin type.

Trans. Amer. Math. Soc., 359(6):2625–2650.

Freyd, P. (1966).

Stable homotopy.

In *Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965),* pages 121–172. Springer, New York.

References

📔 Hanihara, N. (2020).

Auslander correspondence for triangulated categories. *Alg. Number Th.*, 14(8):2037–2058.

📔 Keller, B. (2018).

A remark on a theorem by Claire Amiot. C. R. Math. Acad. Sci. Paris, 356(10):984–986.

Muro, F. (2020).

Enhanced Finite Triangulated Categories. Journal of the Institute of Mathematics of Jussieu, pages 1–43. Rizzardo, A. and Van den Bergh, M. (2019).
A note on non-unique enhancements.
Proc. Amer. Math. Soc., 147(2):451–453.

Xiao, J. and Zhu, B. (2005).
Locally finite triangulated categories.
J. Algebra, 290(2):473–490.