Categorification of representation theory with an application to Soergel bimodules

(joint work with Mackaay, Mazorchuk, Tubbenhauer and Zhang)

Vanessa Miemietz (University of East Anglia)

Why 2-representation theory?

- monoidal categories and 2-categories becoming more and more important, leading to advances in representation theory
 - homological data on group- and Lie-theoretic objects
 - proof of Broué's abelian defect group conjecture for symmetric groups
 - algebraic proof of Kazhdan-Lusztig conjectures for all Coxeter types via Soergel bimodules
 - counterexamples to James' conjectures for symmetric groups
- study 2-categories using 2-representation theory

Note: All categories in this talk are assumed to be locally small (or small if necessary). Further, k is an algebraically closed field.

Let A be an algebra. Consider $A/\mathrm{rad}(A) \cong \prod_{i=1}^{r} M_{n_i}(\Bbbk)$.

We can assume $1_A = \sum_{i=1}^r 1_{M_{n_i}(\Bbbk)}$, and each $1_{M_{n_i}(\Bbbk)} = e_{i1} + \cdots + e_{in_i}$ can be decomposed into primitive orthogonal idempotents.

 $\exists \text{ bijection } \{\text{simple } A\text{-modules}\} / \cong \leftrightarrow \{e_{i1}Ae_{i1}/\mathrm{rad}(e_{i1}Ae_{i1}) | i = 1, \dots, r\}.$

Moreover, for a simple A-module S, we have a double centraliser theorem:

$$\operatorname{End}_{\operatorname{End}_{A}(S)}(S) \cong A/\operatorname{ann}(S)$$

If S is the simple module labelled by i, then $A/\operatorname{ann}(S) \cong M_{n_i}(\Bbbk)$ is Morita equivalent to $\operatorname{End}_A(S) \cong \Bbbk$.

Upshot: All of this categorifies in some form, but not on the the nose (no semisimplicity modulo radical, each 'matrix ring' analogue can have lots of simples, etc).

Definition. A 2-category & consists of

- ▶ a class (or set) 𝒞 of objects;
- \blacktriangleright for every i, $j\in \mathscr{C}$ a small category $\mathscr{C}(\texttt{i},\texttt{j})$ of morphisms from i to j
 - objects in $\mathscr{C}(i, j)$ are called 1-morphisms of \mathscr{C} ,
 - morphisms in C(i, j) are called 2-morphisms of C;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ▶ identity 1-morphisms 1_i for every $i \in C$;
- natural (strict) axioms.

Weak axioms yield a bicategory.

Examples.

- ► A (strict) monoidal category C is a 2-category with one object, which has the objects of C as 1-morphisms, and the morphisms of C as 2-morphisms.
- the 2-category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- ▶ the 2-category \mathfrak{A}^f_{\Bbbk} whose
 - objects are small idempotent complete k-linear categories with finitely many indecomposable objects up to isomorphism and finite-dimensional morphism spaces

(that is, equivalent to the category of finitely generated projective modules over a finite-dimensional k-algebra);

- ▶ 1-morphisms are additive k-linear functors;
- 2-morphisms are natural transformations.

Definition. A 2-category \mathscr{C} is **finitary** over \Bbbk if

- ▶ *C* has finitely many objects;
- ▶ each $\mathscr{C}(i, j)$ is in \mathfrak{A}^f_{\Bbbk} (i.e. equivalent to *A*-proj for some algebra *A*);
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Moral: Finitary 2-categories are 2-analogues of finite dimensional algebras.

Definition. A 2-category \mathscr{C} is **fiat** (finitary - involution - adjunction - two category) if

- it is finitary;
- there is a weak involutive equivalence (−)*: C → C^{op,op} such that there exist adjunction morphisms F ∘ F* → 1_i and 1_j → F* ∘ F.

Examples

- tensor categories (only weakly fiat)
- fusion categories (semi-simple tensor categories)
- projective endofunctors of A-mod (finitary for finite dimensional A, fiat if A weakly symmetric)
- finitary quotients of Kac–Moody 2-categories (aka KLR 2-categories, categorified quantum groups)
- Soergel bimodules (aka Hecke 2-categories)

From now on, $\mathscr C$ denotes a fiat 2-category.

Definition. A finitary 2-representation **M** of \mathscr{C} is a (strict) 2-functor $\mathscr{C} \to \mathfrak{A}^f_{\Bbbk}$, i.e.

- $M(i) \approx B_i$ -proj for some algebra B_i ;
- ▶ for $F \in \mathscr{C}(i, j)$, M(F): $M(i) \to M(j)$ is an additive functor;
- ▶ for $\alpha \colon F \to G$, $M(\alpha) \colon M(F) \to M(G)$ is a natural transformation.

Example.

- For each object i in \mathscr{C} , we have the **principal** 2-representation $P_i = \mathscr{C}(i, -)$.
- Projective A-A-bimodules acting on A-proj.

Definition. M is simple transitive if $\coprod_{i\in \mathscr{C}} M(i)$ has no proper \mathscr{C} -stable ideals.

Goal. Classify simple transitive 2-representations for interesting 2-categories.

 $\Sigma(\mathscr{C}),$ the set of isoclasses of indecomposable 1-morphisms in $\mathscr{C},$ has several partial preorders.

left preorder: $F \ge_L G$ if $\exists H$ such that F is a direct summand of HG left cells: equivalence classes w.r.t. \ge_L

```
Similarly:

right preorder: F \ge_R G if \exists H such that F is a direct summand of GH

right cells: equivalence classes w.r.t. \ge_R
```

```
two-sided preorder: F \geq_J G if \exists H_1, H_2 such that F is a direct summand of H_1 G H_2
```

two-sided cells: equivalence classes w.r.t. \geq_J

Cell combinatorics for 2-categories

Example. Cells for the 2-category \mathscr{S} of Soergel bimodules are Kazhdan–Lusztig cells.

E.g. let $W = \langle s, t | s^2 = 1 = t^2, stst = tsts \rangle$ of type B_2 . Cells are given by

An \mathcal{H} -cell is the intersection of a left and a right cell.

A two-sided cell is **strongly regular**, if every \mathcal{H} -cell in it has precisely one element.

Simple transitive 2-representations

Lemma. [Chan–Mazorchuk] Every simple transitive 2-representation **M** has an **apex**, which is the unique maximal two-sided cell \mathcal{J} such that $\mathbf{M}(\mathcal{J}) \neq 0$.

 \rightsquigarrow study simple transitive 2-representations apex by apex

To each left cell \mathcal{L} in \mathscr{C} , we can associate a **cell** 2-representation $C_{\mathcal{L}}$, which is simple transitive by construction.

Theorem. [Mazorchuk–M.] If the apex of a simple transitive 2-representation \mathbf{M} is strongly regular, \mathbf{M} is equivalent to a cell 2-representation.

Known: Simple transitive implies cell for

- appropriate quotients of Kac–Moody 2-categories [Mazorchuk–M, Macpherson];
- 2-categories of projective bimodules [Mazorchuk–M, Mazorchuk–M–Zhang];
- Soergel bimodules in type *A*, but **not** in other types.

Let $\mathcal{L} \subseteq \mathcal{J}$ be a left cell in \mathscr{C} and set $\mathcal{H} = \mathcal{L} \cap \mathcal{L}^*$.

Construct $\mathscr{C}_{\mathcal{H}}$ in several steps:

- ▶ take quotients by all two-sided cells $\mathcal{J}' \nleq \mathcal{J}$;
- ▶ inside quotient, take additive closure of $\mathbb{1}_{i(\mathcal{H})}$ and 1-morphisms in \mathcal{H} ;
- ▶ factor out the maximal ideal not containing id_F for $F \in \mathcal{H}$.

Theorem. [Mackaay–Mazorchuk–M–Zhang] There is a bijection

Upshot: concentrate on $\mathscr{C}_{\mathcal{H}} \rightsquigarrow$ smaller! We call this \mathcal{H} -cell reduction.

Let **M** be a simple transitive 2-representation of $\mathscr{C}_{\mathcal{H}}$.

There is a canonical 2-functor

can:
$$\mathscr{C}_{\mathcal{H}} \to \mathscr{E}\mathit{nd}_{\mathscr{E}\mathit{nd}_{\mathscr{C}_{\mathcal{H}}}(M)}(M).$$

Theorem. [Double Centraliser Theorem] There is an equivalence of 2-semicategories

$$\mathscr{E}\mathit{nd}^{\mathit{inj}}_{\mathscr{E}\mathit{nd}_{\mathscr{C}_{\mathcal{H}}}(\mathsf{M})}(\mathsf{M}) \simeq \mathrm{add}(\mathcal{H}),$$

where *inj* refers to restricting to injective endofunctors.

Hecke algebras

(W,S) Coxeter group $W = \langle s_i |, s_i \in S, s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1
angle$ for some $m_{ij} \in \{2,3,\cdots,\infty\}$

The Hecke algebra H(W) associated to W is a quantisation of $\mathbb{Z}W$, and has an associated **cell theory** (Kazhdan-Lusztig cells). To a **two-sided cell** J and each intersection H of a **left cell** with its associated **right cell**, Lusztig associates an **asymptotic Hecke algebra**, and there is a bijection

Idea: Asymptotic algebras are easier to understand. They are essentially matrix algebras with a modified multiplication, but the classification of simple module is not affected.

Soergel bimodules or the Hecke 2-category

(W, S, V) finite Coxeter system, V reflection representation $R = \mathbb{C}[V]/(\mathbb{C}[V]^W)_+$ coinvariant algebra

 $R_i := R \otimes_{R^{s_i}} R$ for $s_i \in S$

The 2-category $\mathscr{S}=\mathscr{S}_{W,S,V}$ of Soergel bimodules or Hecke 2-category has

- one object Ø (identified with R-proj);
- ▶ 1-morphisms are endofunctors of Ø isomorphic to tensoring with direct summands of direct sums of finite tensor products (over R) of the R_i;
- 2-morphisms are all natural transformations (bimodule morphisms).

Fact: Indecomposable 1-morphisms are labelled by elements in W, and \mathscr{S} categorifies the Hecke algebra. In particular, indecomposable 1-morphism descend to a cellular basis (the KL-basis). [Soergel]

 $\begin{array}{l} \mathcal{H}\text{-cell reduction reduces classification of simple transitive} \\ \text{2-representations of } \mathscr{S} \text{ to } \mathscr{S}_{\mathcal{H}} \text{, where } \mathcal{H} \text{ runs over a choice of diagonal} \\ \mathcal{H}\text{-cell in each two-sided cell.} \end{array}$

Let $C_{\mathcal{H}}$ be the cell 2-representation of $\mathscr{S}_{\mathcal{H}}$ associated to \mathcal{H} . The double centraliser theorem specialises to an equivalence of 2-semicategories

$$\mathscr{E}nd^{inj}_{\mathscr{E}nd_{\mathscr{S}_{\mathcal{H}}}(\mathsf{C}_{\mathcal{H}})}(\mathsf{C}_{\mathcal{H}}) \simeq \mathrm{add}(\mathcal{H}).$$

To $\mathscr{S}_{\mathcal{H}}$, associate the **asymptotic bicategory** $\mathscr{A}_{\mathcal{H}}$. This categorifies Lusztig's asymptotic Hecke algebra. [Lusztig, Elias-Williamson]

 $\mathscr{A}_{\mathcal{H}}$ is fusion (i.e. semisimple) and for almost all \mathcal{H} -cells, $\mathscr{A}_{\mathcal{H}}$ is well-understood and its simple transitive 2-representations have been classified. [Ostrik et al.]

Classification of simple transitive 2-representations?

Theorem. There is a biequivalence

 $\mathscr{E}\textit{nd}_{\mathscr{S}_{\mathcal{H}}}(C_{\mathcal{H}}) \simeq \mathscr{A}_{\mathcal{H}}$

Caution: Ignoring gradings here for nicer statements! Using these results, we can show:

Theorem. There is an biequivalence of 2-categories

 $\{(\text{graded}) \text{ simple transitive 2-representations of } \mathscr{A}_{\mathcal{H}}\}$

{(graded) simple transitive 2-representations of $\mathscr{S}_{\mathcal{H}}$ with apex \mathcal{H} }

1

Upshot. Reduces classification problem to a well-studied one.

Thank you for your attention!