Preprojective algebras and fractional Calabi-Yau algebras

> Joseph Grant University of East Anglia, UK

FD Seminar, 15 October 2020 Slides: jgrant.xyz/fdsem2020

Plan

- What do the words mean?
- What's the rough argument?
- How do you do it properly?
- Higher homological algebra

Reference:

- "Serre functors and graded categories" (2007.01817)
- also: "The Nakayama automorphism of a self-injective preprojective algebra", Bull. LMS 2020, (1906.11817)

What do the words mean?

Preprojective algebras and fractional Calabi-Yau algebras

Given a quiver we consider two algebras: its path algebra and its preprojective algebra. If the quiver is Dynkin (ADE) then both have nice properties: the path algebra is fractionally Calabi-Yau and the preprojective algebra has a Nakayama automorphism of finite order. I will explain what these words mean and how these properties are related, using 2-dimensional category theory. This gives a useful criterion to check if a *d*-representation finite algebra is fractionally Calabi-Yau.

Preprojective algebra (1)

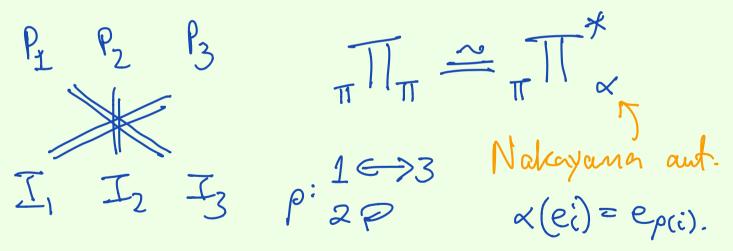
Given a quiver, double it and impose "fake commutativity" relations. $Q = 1 \xrightarrow{a} 2 \xrightarrow{b} 3$, $\overline{Q} = 1 \xrightarrow{a} 2 \xrightarrow{b} 3$, $\overset{a}{a} a = 0$, $\overset{b}{a} a^{\dagger} a = 0$, $\overset{b}{b} a^{\dagger} a = 0$,

If underlying graph is Dynkin (ADE), get a finite dimensional algebra Π. Study its projective and injective representations.

Preprojective algebra (2)

They're the same! (Up to a permutation.)

This is because Π is self-injective/Frobenius. Note that $\alpha^2 = 1$.



This was "folklore" and proved by [Brenner-Butler-King 2002].

Path algebra (1)

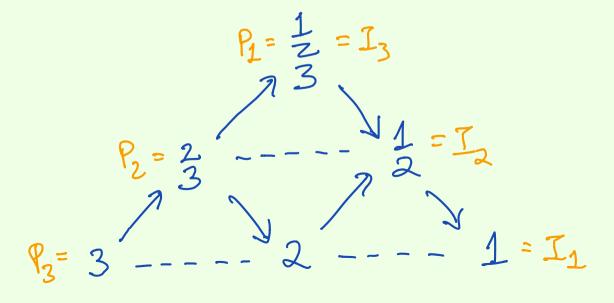
Gabriel's Theorem:

Q is Dynkin \Leftrightarrow kQ has finitely many indecomposable modules.

 $=1 \xrightarrow{a} 2$

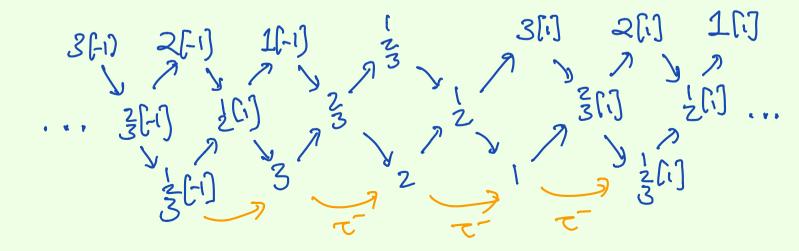
, ez, ez, a, b, ba>

We can draw the category ind(kQ) of indecomposable modules. This picture is called the Auslander-Reiten quiver.



Path algebra (2)

The derived category $D^{b}(kQ)$ has indecomposable objects $\mathbb{Z} \times \operatorname{ind}(kQ)$. We can draw its picture (AR quiver) too. Note the shift functor [1], also written Σ .



Serre functor (1)

Let C be a linear category (its hom sets are vector spaces).

A functor S: $C \rightarrow C$ is called a *Serre functor* if it satisfies Serre duality:

$$\mathcal{C}(x,y) \xrightarrow{\sim} \mathcal{C}(y,Sx)^T$$
 natural in $x,y \in \mathcal{C}$

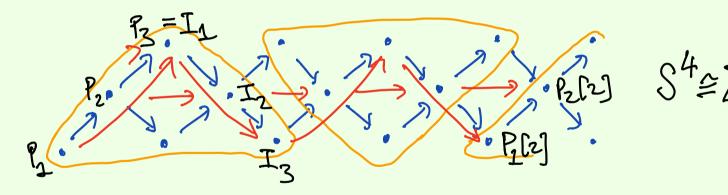
As kQ has finite (global and vector space) dimension, D^b(kQ) has a Serre functor. It sends projectives to injectives.

C is *fractionally Calabi-Yau* if $\exists p, q \in \mathbb{Z}$, and a relation $S^q \cong \Sigma^p$

Serre functor (2) Q: ADE Dynkin.

 $D^{b}(kQ)$ is fractionally Calabi-Yau: $S^{p+2} \cong \Sigma^{p}$

This was "folklore" and proved by [Miyachi-Yekutieli 2001].



The BBK and MY results are known to be related in some cases [Herschend-Iyama 2011a].

We want a general result: detect fCY via Nakayama autom.

What's the rough argument? (1)

S and Σ commute. So the fractional Calabi-Yau relation $S^{p+2} = \Sigma^p$ can be rearranged:

$$S^{P+2} = Z^{P}$$

$$S^{P+2} = (S^{P}S^{-P})Z^{P}$$

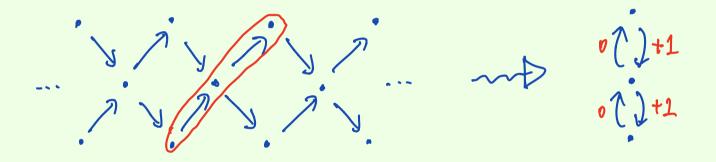
$$S^{2} = (S^{-}Z)^{P}$$

$$= \tau^{-P}$$

 $(S^{-1}\Sigma) = \tau^{-}$, the (derived inverse) AR translate. So: $S^{p+2} = \Sigma^{p}$ on D^b(kQ) $\Leftrightarrow S^{2} = \tau^{-p}$ on D^b(kQ).

What's the rough argument? (2)

Use orbit category $D^{b}(kQ)/\tau^{-}$. Action of τ^{-} gives it a grading.



The existence of S on $D^{b}(kQ)$ shows Π is self-injective [lyama-Oppermann, 2013]. With the grading:

 $S^2 = \tau^{-p}$ on $D^{b}(kQ) \iff S^2 = id\{p\}$ on $D^{b}(kQ)/\tau^{-1}$

What's the rough argument? (3)

A one-object category $C = \{\bullet\}$ defines an algebra $A = C(\bullet, \bullet)$.

$$A = \mathcal{C}(\bullet, \bullet) \cong \mathcal{C}(\bullet, S \bullet)^{*} = A^{*}_{\alpha}$$

A Serre functor S for C gives a Nakayama functor α for A.

Summary: $S^{p+2} = \Sigma^p \text{ on } D^b(kQ) \iff S^2 = \tau^{-p} \text{ on } D^b(kQ)$ $(fC)^m \iff S^2 = \{p\} \text{ on orbit category}$ $\Leftrightarrow \alpha^2 = \{p\} \text{ on } \Pi$ *finile order Nahayama*

How do you do it properly?

First, what's the difficulty? $S^{p+2} = \Sigma^p$ should be $S^{p+2} \cong \Sigma^p$. We have a category, functors, and natural isomorphisms. This is 2-categorical.

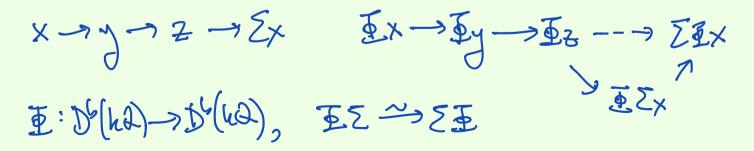
What about the Frobenius algebra? Is this 2-categorical? Yes. Nakayama autom. is only unique up to inner automorphism. 2-category: algebras, homomorphisms, and inner autom.s. ∂ -cells 1-cells 2-cells. Relationship between algebras and categories is 2-functorial. $(on cone^{\circ}).$

Orbit categories (1)

Taking orbit categories is a biequivalence [Asashiba 2017]:

Equivariant categories	Hom-graded categories
0-cells: $(D, F: D \rightarrow D)$	0: C with graded hom spaces
1-cells: $(\Phi: D \rightarrow D, \phi: \Phi F \rightarrow F \Phi)$	1: (<i>H</i> : $C \rightarrow C$, γ : degree adjuster)
2-cells: commuting nat. tx.s	2: homogeneous nat. tx.s

Triangulated functors on $D^{b}(kQ)$ are 1-cells on $(D^{b}(kQ), \Sigma)$.



Orbit categories (2)

Strong fractionally Calabi-Yau definition [Keller 2008]: There exists isom. of equivariant functors on $(D^{b}(kQ), \Sigma)$

 $(S,s)^p \cong (\Sigma,-1)^q$

where (*S*, *s*) satisfies compatibility condition. Equivalently, (*S*, *s*) is triangulated [Van-den-Bergh 2011].

So far, everything is Σ -equivariant.

But we want to take orbit category by τ^- .

We need to make everything τ^- -equivariant.

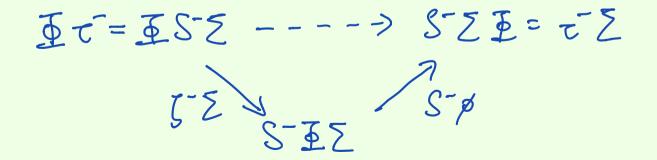
Change of action (1)

A Serre functor S commutes with everything: $f: \mathcal{C} \xrightarrow{\sim} \mathcal{C}$

$$C(x, SFy) \simeq C(fy, x)^* \simeq C(y, F'x)^* \simeq C(F'x, Sy)$$

 $\Im : SF \longrightarrow FS \simeq C(x, FSy)$

So we can make Σ -equivariant functors τ^- -equivariant:



Change of action (2)

Understand the commutation morphisms well [Keller, Dugas 2012, Chen 2017], so get equivalence of monoidal categories: End($D^b(kQ), \Sigma$) \cong End($D^b(kQ), \tau^-$) $(S, s)^{-1}(\Sigma, -1) \mapsto (\tau^-, 1)$

Theorem:

"strong fCY" for D^b(
$$kQ$$
) $\mapsto \alpha^2 = \{p\}$ on Π .

Note: α is not classical Nakayama automorphism. It differs by a sign $(-1)^n$.

Higher homological algebra (1)

Nice properties of kQ and Π generalise to algebras Λ with a *d*-cluster tilting module [Iyama 2007].

"*d*-representation finite algebras" ⊂ "*d*-hereditary algebras"

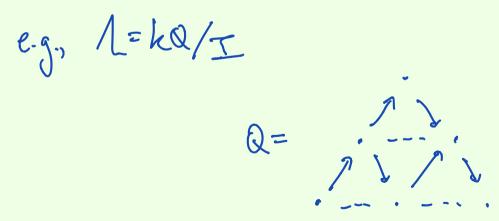
Our theorem works in this generality:

• $D^{b}(\Lambda)$ is fractionally Calabi-Yau $\Leftrightarrow \Pi$ has "finite" (graded) Nakayama automorphism.

Higher homological algebra (2)

Example: higher Auslander algebras of type A [Iyama 2011]. Both properties are known:

- Nakayama automorphism of Π [Herschend-Iyama 2011a].
- $D^{b}(\Lambda)$ is frac. Calabi-Yau [Dyckerhoff-Jasso-Walde 2019].

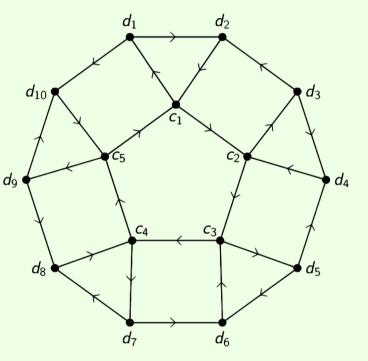


Higher homological algebra (3)

Example: Planar quivers with potential from Postnikov diagrams. These have 2-cluster tilting modules.

When Frobenius, Nakayama automorphism given by diagram rotation [Pasquali 2020].

So taking cuts [Herschend-Iyama 2011b] gives fractional Calabi-Yau algebras.



Thanks for listening!