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Background

Let A = (ajj) be an invertible n x n matrix with integer coefficients. To any such
A, we can associate a polynomial

n n
w= E Hxa’f.
i=1 j=1

We can also associate a polynomial to A”, called the Berglund—Hiibsch transpose,
defined as

Example 1

Let A= <g ;) Then w = x3y + y?, and W = x3 + y?x.

Definition 2

Let A, w, and W be as above. If both w and W define isolated singularities at the
origin, and are both quasi-homogeneous, then we say that w is invertible.

| A
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Background

The three atomic polynomials are:

e Fermat: x{*

the 3 P1 P2 Pn—1
o Chain: x{'xo + X5°Xx3 + -+ - + X, " 7' Xp + xB7

@ Loop: x{'xa + xb2xg + -+ + xPrxq

¢ 0 0
Let A= [1 2 0] be the matrix which yields w = x’ 4+ xy? + 22, the D;_;
0 0 2

singularity. This is the Thom—Sebastiani sum of a chain and Fermat polynomial.
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The maximal symmetry group is defined as:

Fw = {(t17 ey tn+1) - ((C*)’H_l‘ w(tlxl, ey tnX,,) = t,,+1W(X]_, . ,Xn)}.

In general, Ty, is a finite extension of C*,

Conjecture 1 (Takahashi ‘10, Ueda ‘06, Futaki-Ueda ‘11, Lekili-Ueda

'18)

For any invertible polynomial w, there is a quasi-equivalence
FS(W) ~ mf(A", Ty, w)

of pre-triangulated A, categories over C.
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Consider V the Milnor fibre of W, and

Zy = [(Spec C[xo, - .., Xn] /(W + x0x1 ... Xp) \ (0))/Tw]-

Conjecture 2 (Lekili-Ueda ‘18)

For any invertible polynomial w of log general type, there is a quasi-equivalence

F(V) ~ perf Z,,
W(V) ~ Db(Coh Z,)

of pre-triangulated A..-categories over C.




Background

For the rest of the talk, we will restrict ourselves to n = 2.

Theorem 1 (Smith — H. '19)

For w an invertible polynomial in two variables, there is a quasi—equivalence
FS(W) ~ mf(A2, Ty, w)

of pre-triangulated A, categories over C.
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Theorem 2 (H. ‘20)

Let w be an invertible polynomial in two variables. Then there is a
quasi—equivalence

F(V) ~ perf Z,

of pre-triangulated A, categories over C.
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Representation theory of gentle algebras

Curves with non-empty boundary and stops <— Gentle algebras,
Partially wrapped Fukaya categories +— DP(A — mod),
Rotating endpoints <— Auslander-Reiten translation,
Compact Lagrangians «— Band modules,
Non-compact Lagrangians «— String modules
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Let w = W = xPy + y9x with p > g > 2. Recall (Orlov ‘09, Polishchuk-Vaintrob
‘11)

HMF (A2, Ty, w) ~ D2 ([w™1(0)/Tw])

sing

~ (C,D*(Y)),

where Y is the projectivised stack [(w=1(0)\ {0})/I'w], and C is a subcategory of
certain graded shifts of the origin. Define £ be the direct sum of the objects
corresponding to:

@ The p — 1 objects corresponding to the structure sheaf of the line x = 0,
@ The g — 1 objects corresponding to the structure sheaf of the line y =0,

@ The object corresponding to the structure sheaf of the line xP~% + y9=1 =0,
and

@ The (p — 1)(g — 1) objects corresponding to the structure sheaf of the origin
and its fattenings.
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The B—side part |

We define
A7 =End £.

This is given as the path algebra of the following quiver with relations:



The B—side part |

o —3 e —>e0 — Ho—io
e — 0 — 0 — — & —> @
Relations:

(i) Squares commute

(ii) Dashed compositions
vanish
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Strategy of proof of Theorem 1.

Show that & split generates HMF(A2, T, w)
Observe that End £ is concentrated in degree 0 = Intrinsically formal
Therefore, split generates mf(A2, I, w).

Construct a Lefschetz fibration whose vanishing cycles match.



Figure: Lefschetz fibration corresponding to x%y + y2x
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There is a restriction functor

F(w) = F(V),
A,’ — 8A, =V,

where the vanishing cycle V; is equipped with the induced (non-trivial) spin
structure. At the level of cohomology, we have that

A_End@v AYV[-1],

where multiplication is given by

(a,f) - (b,g) = (ab, ag + fb).

This is the trivial extension algebra of degree 1 of A™".
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For all loop polynomials, @9, V; split generates F(V/) (Seidel).

In order to characterise F(V/), it is enough to understand the chain level
Aco- structure of the endomorphism algebra of %7, V.

It is not formall!

.
Implication

The subcategory of band modules of the corresponding gentle algebra has
non-trivial higher products.
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The proof strategy

Let A be a graded algebra, and consider the set of minimal A..-structures on the
algebra. By a theorem of Polishchuk (‘17):

@ If HH'(A)o = 0, then the set of A, structres on A is parametrised by an
affine scheme, Us.(A).

@ If dim HH?(A) o < o0, then this scheme is of finite type.

Strategy of proof

o Identify a family of curves, each of which defines an A..-structure on
A, and which is parametrised by U, (A).

@ Show that this realises every A, structure on A.

@ Deduce the mirror by computable invariants.
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Consider
o w = xPy + y9x with ged(p— 1,9 — 1) = 1 (so that [, = C*)
odegw=pg—1,degx=qg—1,degy=p—1
@ Jacy is the Jacobian of w.

The semi-universal unfoldings of w are given by

W=w+ Z u,-jx"yj
(iJ)€EIw

with U = Spec Cl[uy, ..., u,] its parameter space.Therefore, W is a map
w:C?xU—C,
and we define

W, = ‘K’|C2><{u}~
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We need to quasi-homogenise each w, to get W, € Clx, y, z].

To do this, define z to have weight (p — 1)(g — 1). This is done so that
degx +degy + degz=degW, =pg—1

Define Uy C U to be those u € U such that w, can be quasi-homogenised.

Example 4

In the case of w = x3y + y?x, we have
o wy,, = X3y + y2x + up1x%y,
o wy,, = X3y aF y2x + Uy 1xy.

In this case, we have that degx =1, degy = 2 = deg z, and degw = 5.
Therefore wy, , ¢ U, but w, , € Uy, since

W,,L1 = x3y + y2x + uy,1xyz

is quasi-homogeneous of degree 5.
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The B-side part Il

For each u € Uy, we can then define
Y, = [(W;1(0)\ (0))/Tw]-
For each u € Uy, there is a natural pushforward functor
mf(A% Ty, w) — mf(A3,T,,W,) =~ D?(Coh Y,).

Let S, be the image of £ under the pushforward functor. At the level of
cohomology,

End(S,) = A~ @ (A7)V[-1] = A

with the multiplication as before (Ueda ‘12).

This is independent of u € U!
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The B-side part |l

Lekili-Ueda show that S, split generates perf Y. Let
A, =end(S,)

be the minimal A, endomorphism algebra of S,,. We get a map
Us — U (A).

Polynomial untwisted = This is an isomorphism.
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The story so far

@ On the A-side, we have identified a split-generator of F(V) whose
cohomology level endomorphism algebra is given by A.

@ On the B-side, we have identified a family of curves such that:

@ The A algebra of the object which split generates perf Y, defines an
Aco-structure on A.

@ Every Aso-structure on A arises as the chain-level endomorphism
algebra of a generating object of perf Y, for some u € U;.




|dentifying the mirror

Theorem 3 (Lekili-Ueda '18)

Let W be the transpose of an invertible polynomial such that V is of log general
type. Then

SH*(V) ~ HH*(F(V)).
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|dentifying the mirror

Sketch of proof of Theorem 1.

@ By the above theorem, a necessary condition for the a candidate mirror is
that SH*(V) ~ HH*(Y,,).
Compute SH*(V). This can be read off from the grading structure of V.

Compute HH*(Y,), which can be done combinatorially. Note that
HH*(Yo) ~ HH*(A).
Unless u = uy 1, we have that rank HH*(Y,) < rank SH*(V).

Since we know that there must be a u € U, for which Y, is mirror to V, the
only possibility is v = uy 1, and Y, = Z,,.

O

V.




Thank you!



