Homological mirror symmetry for invertible polynomials in two variables

Matthew Habermann

October 8, 2020

Background

Let $A=\left(a_{i j}\right)$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$
\mathbf{w}=\sum_{i=1}^{n} \prod_{j=1}^{n} x^{a_{j j}} .
$$

Background

Let $A=\left(a_{i j}\right)$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$
\mathbf{w}=\sum_{i=1}^{n} \prod_{j=1}^{n} x^{a_{i j}}
$$

We can also associate a polynomial to A^{T}, called the Berg/und-Hübsch transpose, defined as

$$
\check{\mathbf{w}}=\sum_{i=1}^{n} \prod_{j=1}^{n} \check{x}^{a^{j j}} .
$$

Background

Let $A=\left(a_{i j}\right)$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$
\mathbf{w}=\sum_{i=1}^{n} \prod_{j=1}^{n} x^{a_{i j}}
$$

We can also associate a polynomial to A^{T}, called the Berglund-Hübsch transpose, defined as

$$
\check{\mathbf{w}}=\sum_{i=1}^{n} \prod_{j=1}^{n} \check{x}^{a_{j i}} .
$$

Example 1

Let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)$. Then $\mathbf{w}=x^{3} y+y^{2}$, and $\check{\mathbf{w}}=x^{3}+y^{2} x$.

Background

Let $A=\left(a_{i j}\right)$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$
\mathbf{w}=\sum_{i=1}^{n} \prod_{j=1}^{n} x^{a_{i j}}
$$

We can also associate a polynomial to A^{T}, called the Berglund-Hübsch transpose, defined as

$$
\check{\mathbf{w}}=\sum_{i=1}^{n} \prod_{j=1}^{n} \check{x}^{a_{j i}} .
$$

Example 1

Let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)$. Then $\mathbf{w}=x^{3} y+y^{2}$, and $\check{\mathbf{w}}=x^{3}+y^{2} x$.

Definition 2

Let A, \mathbf{w}, and $\check{\mathbf{w}}$ be as above. If both \mathbf{w} and $\check{\mathbf{w}}$ define isolated singularities at the origin, and are both quasi-homogeneous, then we say that \mathbf{w} is invertible.

Background

The three atomic polynomials are:

- Fermat: $x_{1}^{p_{1}}$

Background

The three atomic polynomials are:

- Fermat: $x_{1}^{p_{1}}$
- Chain: $x_{1}^{p_{1}} x_{2}+x_{2}^{p_{2}} x_{3}+\cdots+x_{n-1}^{p_{n-1}} x_{n}+x_{n}^{p_{n}}$

Background

The three atomic polynomials are:

- Fermat: $x_{1}^{p_{1}}$
- Chain: $x_{1}^{p_{1}} x_{2}+x_{2}^{p_{2}} x_{3}+\cdots+x_{n-1}^{p_{n-1}} x_{n}+x_{n}^{p_{n}}$
- Loop: $x_{1}^{p_{1}} x_{2}+x_{2}^{p_{2}} x_{3}+\cdots+x_{n}^{p_{n}} x_{1}$

Background

The three atomic polynomials are:

- Fermat: $x_{1}^{p_{1}}$
- Chain: $x_{1}^{p_{1}} x_{2}+x_{2}^{p_{2}} x_{3}+\cdots+x_{n-1}^{p_{n-1}} x_{n}+x_{n}^{p_{n}}$
- Loop: $x_{1}^{p_{1}} x_{2}+x_{2}^{p_{2}} x_{3}+\cdots+x_{n}^{p_{n}} x_{1}$

Example 3

Let $A=\left(\begin{array}{lll}\ell & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ be the matrix which yields $\mathbf{w}=x^{\ell}+x y^{2}+z^{2}$, the $D_{\ell-1}$ singularity. This is the Thom-Sebastiani sum of a chain and Fermat polynomial.

Background

The maximal symmetry group is defined as:

$$
\Gamma_{\mathbf{w}}:=\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \mathbf{w}\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)=t_{n+1} \mathbf{w}\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

In general, Γ_{w} is a finite extension of \mathbb{C}^{*}.

Background

The maximal symmetry group is defined as:

$$
\Gamma_{\mathbf{w}}:=\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in\left(\mathbb{C}^{*}\right)^{n+1} \mid \mathbf{w}\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)=t_{n+1} \mathbf{w}\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

In general, Γ_{w} is a finite extension of \mathbb{C}^{*}.

Conjecture 1 (Takahashi '10, Ueda '06, Futaki-Ueda '11, Lekili-Ueda '18)

For any invertible polynomial \mathbf{w}, there is a quasi-equivalence

$$
\mathcal{F S}(\check{\mathbf{w}}) \simeq \operatorname{mf}\left(\mathbb{A}^{n}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)
$$

of pre-triangulated A_{∞} categories over \mathbb{C}.

Background

Consider \check{V} the Milnor fibre of $\check{\mathbf{w}}$, and

$$
Z_{w}:=\left[\left(\operatorname{Spec} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] /\left(w+x_{0} x_{1} \ldots x_{n}\right) \backslash(0)\right) / \Gamma_{\mathbf{w}}\right] .
$$

Background

Consider \check{V} the Milnor fibre of $\check{\mathbf{w}}$, and

$$
Z_{w}:=\left[\left(\operatorname{Spec} \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] /\left(w+x_{0} x_{1} \ldots x_{n}\right) \backslash(0)\right) / \Gamma_{w}\right]
$$

Conjecture 2 (Lekili-Ueda '18)

For any invertible polynomial w of log general type, there is a quasi-equivalence

$$
\begin{aligned}
\mathcal{F}(\check{V}) & \simeq \operatorname{perf} Z_{w} \\
\mathcal{W}(\check{V}) & \simeq D^{b}\left(\operatorname{Coh} Z_{w}\right)
\end{aligned}
$$

of pre-triangulated A_{∞}-categories over \mathbb{C}.

Background

For the rest of the talk, we will restrict ourselves to $n=2$.

Theorem 1 (Smith - H. '19)

For \mathbf{w} an invertible polynomial in two variables, there is a quasi-equivalence

$$
\mathcal{F S}(\check{\mathbf{w}}) \simeq \operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)
$$

of pre-triangulated A_{∞} categories over \mathbb{C}.

Background

Theorem 2 (H. '20)

Let \mathbf{w} be an invertible polynomial in two variables. Then there is a quasi-equivalence

$$
\mathcal{F}(\check{V}) \simeq \operatorname{perf} Z_{w}
$$

of pre-triangulated A_{∞} categories over \mathbb{C}.

Representation theory of gentle algebras

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,

Representation theory of gentle algebras

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,
Partially wrapped Fukaya categories $\longleftrightarrow D^{b}(A-\bmod)$,

Representation theory of gentle algebras

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,
Partially wrapped Fukaya categories $\longleftrightarrow D^{b}(A-$ mod $)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation,

Representation theory of gentle algebras

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,
Partially wrapped Fukaya categories $\longleftrightarrow D^{b}(A-$ mod $)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation, Compact Lagrangians \longleftrightarrow Band modules,

Representation theory of gentle algebras

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,
Partially wrapped Fukaya categories $\longleftrightarrow D^{b}(A-$ mod $)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation,

Compact Lagrangians \longleftrightarrow Band modules, Non-compact Lagrangians \longleftrightarrow String modules

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$.

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$. Recall (Orlov '09, Polishchuk-Vaintrob '11)

$$
\begin{aligned}
\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) & \simeq D_{\text {sing }}^{b}\left(\left[\mathbf{w}^{-1}(0) / \Gamma_{\mathbf{w}}\right]\right) \\
& \simeq\left\langle\mathcal{C}, D^{b}(Y)\right\rangle
\end{aligned}
$$

where Y is the projectivised stack $\left[\left(\mathbf{w}^{-1}(0) \backslash\{0\}\right) / \Gamma_{\mathbf{w}}\right]$, and \mathcal{C} is a subcategory of certain graded shifts of the origin.

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$. Recall (Orlov '09, Polishchuk-Vaintrob '11)

$$
\begin{aligned}
\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) & \simeq D_{\mathrm{sing}}^{b}\left(\left[\mathbf{w}^{-1}(0) / \Gamma_{\mathbf{w}}\right]\right) \\
& \simeq\left\langle\mathcal{C}, D^{b}(Y)\right\rangle
\end{aligned}
$$

where Y is the projectivised stack $\left[\left(\mathbf{w}^{-1}(0) \backslash\{0\}\right) / \Gamma_{\mathbf{w}}\right]$, and \mathcal{C} is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The $p-1$ objects corresponding to the structure sheaf of the line $x=0$,

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$. Recall (Orlov '09, Polishchuk-Vaintrob '11)

$$
\begin{aligned}
\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) & \simeq D_{\mathrm{sing}}^{b}\left(\left[\mathbf{w}^{-1}(0) / \Gamma_{\mathbf{w}}\right]\right) \\
& \simeq\left\langle\mathcal{C}, D^{b}(Y)\right\rangle
\end{aligned}
$$

where Y is the projectivised stack $\left[\left(\mathbf{w}^{-1}(0) \backslash\{0\}\right) / \Gamma_{\mathbf{w}}\right]$, and \mathcal{C} is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The $p-1$ objects corresponding to the structure sheaf of the line $x=0$,
- The $q-1$ objects corresponding to the structure sheaf of the line $y=0$,

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$. Recall (Orlov '09, Polishchuk-Vaintrob '11)

$$
\begin{aligned}
\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) & \simeq D_{\mathrm{sing}}^{b}\left(\left[\mathbf{w}^{-1}(0) / \Gamma_{\mathbf{w}}\right]\right) \\
& \simeq\left\langle\mathcal{C}, D^{b}(Y)\right\rangle
\end{aligned}
$$

where Y is the projectivised stack $\left[\left(\mathbf{w}^{-1}(0) \backslash\{0\}\right) / \Gamma_{\mathbf{w}}\right]$, and \mathcal{C} is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The $p-1$ objects corresponding to the structure sheaf of the line $x=0$,
- The $q-1$ objects corresponding to the structure sheaf of the line $y=0$,
- The object corresponding to the structure sheaf of the line $x^{p-1}+y^{q-1}=0$, and

The B-side part I

Let $\mathbf{w}=\check{\mathbf{w}}=x^{p} y+y^{q} x$ with $p \geq q \geq 2$. Recall (Orlov '09, Polishchuk-Vaintrob '11)

$$
\begin{aligned}
\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) & \simeq D_{\text {sing }}^{b}\left(\left[\mathbf{w}^{-1}(0) / \Gamma_{\mathbf{w}}\right]\right) \\
& \simeq\left\langle\mathcal{C}, D^{b}(Y)\right\rangle
\end{aligned}
$$

where Y is the projectivised stack $\left[\left(\mathbf{w}^{-1}(0) \backslash\{0\}\right) / \Gamma_{\mathbf{w}}\right]$, and \mathcal{C} is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The $p-1$ objects corresponding to the structure sheaf of the line $x=0$,
- The $q-1$ objects corresponding to the structure sheaf of the line $y=0$,
- The object corresponding to the structure sheaf of the line $x^{p-1}+y^{q-1}=0$, and
- The $(p-1)(q-1)$ objects corresponding to the structure sheaf of the origin and its fattenings.

The B-side part I

We define

$$
A^{\rightarrow}=\operatorname{End} \mathcal{E} .
$$

The B-side part I

We define

$$
A^{\rightarrow}=\operatorname{End} \mathcal{E} .
$$

This is given as the path algebra of the following quiver with relations:

The B-side part I

Relations:

(i) Squares commute
(ii) Dashed compositions vanish

Strategy of proof of Theorem 1.

- Show that \mathcal{E} split generates $\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$

Strategy of proof of Theorem 1.

- Show that \mathcal{E} split generates $\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$
- Observe that End \mathcal{E} is concentrated in degree $0 \Longrightarrow$ Intrinsically formal

Strategy of proof of Theorem 1.

- Show that \mathcal{E} split generates $\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$
- Observe that End \mathcal{E} is concentrated in degree $0 \Longrightarrow$ Intrinsically formal
- Therefore, split generates $\operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$.

Strategy of proof of Theorem 1.

- Show that \mathcal{E} split generates $\operatorname{HMF}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$
- Observe that End \mathcal{E} is concentrated in degree $0 \Longrightarrow$ Intrinsically formal
- Therefore, split generates $\operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)$.
- Construct a Lefschetz fibration whose vanishing cycles match.

The A-side

Figure: Lefschetz fibration corresponding to $x^{2} y+y^{2} x$

The A-side

There is a restriction functor

$$
\begin{aligned}
\mathcal{F}(\check{\mathbf{w}}) & \rightarrow \mathcal{F}(\check{V}), \\
\Delta_{i} & \mapsto \partial \Delta_{i}=: V_{i},
\end{aligned}
$$

where the vanishing cycle V_{i} is equipped with the induced (non-trivial) spin structure.

The A-side

There is a restriction functor

$$
\begin{aligned}
\mathcal{F}(\check{\mathbf{w}}) & \rightarrow \mathcal{F}(\check{V}), \\
\Delta_{i} & \mapsto \partial \Delta_{i}=: V_{i},
\end{aligned}
$$

where the vanishing cycle V_{i} is equipped with the induced (non-trivial) spin structure. At the level of cohomology, we have that

$$
A:=\operatorname{End}\left(\bigoplus_{i=1}^{p q} V_{i}\right)=A^{\rightarrow} \oplus\left(A^{\rightarrow}\right)^{\vee}[-1]
$$

where multiplication is given by

$$
(a, f) \cdot(b, g)=(a b, a g+f b)
$$

The A-side

There is a restriction functor

$$
\begin{aligned}
\mathcal{F}(\check{\mathbf{w}}) & \rightarrow \mathcal{F}(\check{V}), \\
\Delta_{i} & \mapsto \partial \Delta_{i}=: V_{i},
\end{aligned}
$$

where the vanishing cycle V_{i} is equipped with the induced (non-trivial) spin structure. At the level of cohomology, we have that

$$
A:=\operatorname{End}\left(\bigoplus_{i=1}^{p q} V_{i}\right)=A^{\rightarrow} \oplus\left(A^{\rightarrow}\right)^{\vee}[-1]
$$

where multiplication is given by

$$
(a, f) \cdot(b, g)=(a b, a g+f b)
$$

This is the trivial extension algebra of degree 1 of $A \rightarrow$.

The A-side part

For all loop polynomials, $\bigoplus_{i=1}^{p q} V_{i}$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).

The A-side part

For all loop polynomials, $\bigoplus_{i=1}^{p q} V_{i}$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).
Key point
In order to characterise $\mathcal{F}(\check{V})$, it is enough to understand the chain level $A_{\infty^{-}}$structure of the endomorphism algebra of $\bigoplus_{i=1}^{p q} V_{i}$.

The A-side part

For all loop polynomials, $\bigoplus_{i=1}^{p q} V_{i}$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).
Key point
In order to characterise $\mathcal{F}(\Sigma)$, it is enough to understand the chain level $A_{\infty^{-}}$structure of the endomorphism algebra of $\bigoplus_{i=1}^{p q} V_{i}$.

It is not formal!

The A-side part

For all loop polynomials, $\bigoplus_{i=1}^{p q} V_{i}$ split generates $\mathcal{F}(\check{V})$ (Seidel).

Key point

In order to characterise $\mathcal{F}(\check{V})$, it is enough to understand the chain level $A_{\infty^{-}}$structure of the endomorphism algebra of $\bigoplus_{i=1}^{p q} V_{i}$.

It is not formal!

Implication

The subcategory of band modules of the corresponding gentle algebra has non-trivial higher products.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra. By a theorem of Polishchuk ('17):
(1) If $\mathrm{HH}^{1}(A)_{<0}=0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra. By a theorem of Polishchuk ('17):
(1) If $\mathrm{HH}^{1}(A)_{<0}=0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.
(2) If $\operatorname{dim} \mathrm{HH}^{2}(A)_{<0}<\infty$, then this scheme is of finite type.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra. By a theorem of Polishchuk ('17):
(1) If $\mathrm{HH}^{1}(A)_{<0}=0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.
(2) If $\operatorname{dim} \mathrm{HH}^{2}(A)_{<0}<\infty$, then this scheme is of finite type.

Strategy of proof

- Identify a family of curves, each of which defines an A_{∞}-structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra. By a theorem of Polishchuk ('17):
(1) If $\mathrm{HH}^{1}(A)_{<0}=0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.
(2) If $\operatorname{dim} \mathrm{HH}^{2}(A)_{<0}<\infty$, then this scheme is of finite type.

Strategy of proof

- Identify a family of curves, each of which defines an A_{∞}-structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.
- Show that this realises every A_{∞} structure on A.

The proof strategy

Let A be a graded algebra, and consider the set of minimal A_{∞}-structures on the algebra. By a theorem of Polishchuk ('17):
(1) If $\mathrm{HH}^{1}(A)_{<0}=0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.
(2) If $\operatorname{dim} \mathrm{HH}^{2}(A)_{<0}<\infty$, then this scheme is of finite type.

Strategy of proof

- Identify a family of curves, each of which defines an A_{∞}-structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.
- Show that this realises every A_{∞} structure on A.
- Deduce the mirror by computable invariants.

The B-side part II

Consider

- $\mathbf{w}=x^{p} y+y^{q} x$ with $\operatorname{gcd}(p-1, q-1)=1$ (so that $\left.\Gamma_{\mathbf{w}} \simeq \mathbb{C}^{*}\right)$

The B-side part II

Consider

- $\mathbf{w}=x^{p} y+y^{q} x$ with $\operatorname{gcd}(p-1, q-1)=1\left(\right.$ so that $\left.\Gamma_{\mathbf{w}} \simeq \mathbb{C}^{*}\right)$
- $\operatorname{deg} \mathbf{w}=p q-1, \operatorname{deg} x=q-1, \operatorname{deg} y=p-1$

The B-side part II

Consider

- $\mathbf{w}=x^{p} y+y^{q} x$ with $\operatorname{gcd}(p-1, q-1)=1$ (so that $\left.\Gamma_{\mathbf{w}} \simeq \mathbb{C}^{*}\right)$
- $\operatorname{deg} \mathbf{w}=p q-1, \operatorname{deg} x=q-1, \operatorname{deg} y=p-1$
- $\mathrm{Jac}_{\mathbf{w}}$ is the Jacobian of \mathbf{w}.

The B-side part II

Consider

- $\mathbf{w}=x^{p} y+y^{q} x$ with $\operatorname{gcd}(p-1, q-1)=1$ (so that $\left.\Gamma_{\mathbf{w}} \simeq \mathbb{C}^{*}\right)$
- $\operatorname{deg} \mathbf{w}=p q-1, \operatorname{deg} x=q-1, \operatorname{deg} y=p-1$
- $\mathrm{Jac}_{\mathbf{w}}$ is the Jacobian of \mathbf{w}.

The semi-universal unfoldings of \mathbf{w} are given by

$$
\tilde{\mathbf{w}}=\mathbf{w}+\sum_{(i, j) \in J_{\mathbf{w}}} u_{i j} x^{i} y^{j}
$$

with $U=\operatorname{Spec} \mathbb{C}\left[u_{1}, \ldots, u_{\mu}\right]$ its parameter space.

The B-side part II

Consider

- $\mathbf{w}=x^{p} y+y^{q} x$ with $\operatorname{gcd}(p-1, q-1)=1$ (so that $\left.\Gamma_{\mathbf{w}} \simeq \mathbb{C}^{*}\right)$
- $\operatorname{deg} \mathbf{w}=p q-1, \operatorname{deg} x=q-1, \operatorname{deg} y=p-1$
- $\mathrm{Jac}_{\mathbf{w}}$ is the Jacobian of \mathbf{w}.

The semi-universal unfoldings of \mathbf{w} are given by

$$
\tilde{\mathbf{w}}=\mathbf{w}+\sum_{(i, j) \in J_{\mathbf{w}}} u_{i j} x^{i} y^{j}
$$

with $U=\operatorname{Spec} \mathbb{C}\left[u_{1}, \ldots, u_{\mu}\right]$ its parameter space.Therefore, $\tilde{\mathbf{w}}$ is a map

$$
\tilde{\mathbf{w}}: \mathbb{C}^{2} \times U \rightarrow \mathbb{C},
$$

and we define

$$
\mathbf{w}_{u}:=\left.\tilde{\mathbf{w}}\right|_{\mathbb{C}^{2} \times\{u\}} .
$$

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$.

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

Define $U_{+} \subseteq U$ to be those $u \in U$ such that \mathbf{w}_{u} can be quasi-homogenised.

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

Define $U_{+} \subseteq U$ to be those $u \in U$ such that \mathbf{w}_{u} can be quasi-homogenised.

Example 4

In the case of $\boldsymbol{w}=x^{3} y+y^{2} x$, we have

- $\mathbf{w}_{u_{2,1}}=x^{3} y+y^{2} x+u_{2,1} x^{2} y$,

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

Define $U_{+} \subseteq U$ to be those $u \in U$ such that \mathbf{w}_{u} can be quasi-homogenised.

Example 4

In the case of $\boldsymbol{w}=x^{3} y+y^{2} x$, we have

- $\mathbf{w}_{u_{2,1}}=x^{3} y+y^{2} x+u_{2,1} x^{2} y$,
- $\boldsymbol{w}_{u_{1,1}}=x^{3} y+y^{2} x+u_{1,1} x y$.

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

Define $U_{+} \subseteq U$ to be those $u \in U$ such that \mathbf{w}_{u} can be quasi-homogenised.

Example 4

In the case of $\boldsymbol{w}=x^{3} y+y^{2} x$, we have

- $\mathbf{w}_{u_{2,1}}=x^{3} y+y^{2} x+u_{2,1} x^{2} y$,
- $\mathbf{w}_{u_{1,1}}=x^{3} y+y^{2} x+u_{1,1} x y$.

In this case, we have that $\operatorname{deg} x=1, \operatorname{deg} y=2=\operatorname{deg} z$, and $\operatorname{deg} \mathbf{w}=5$.

The B-side part II

We need to quasi-homogenise each \mathbf{w}_{u} to get $\mathbf{W}_{u} \in \mathbb{C}[x, y, z]$.
To do this, define z to have weight $(p-1)(q-1)$. This is done so that

$$
\operatorname{deg} x+\operatorname{deg} y+\operatorname{deg} z=\operatorname{deg} \mathbf{W}_{u}=p q-1
$$

Define $U_{+} \subseteq U$ to be those $u \in U$ such that \mathbf{w}_{u} can be quasi-homogenised.

Example 4

In the case of $\boldsymbol{w}=x^{3} y+y^{2} x$, we have

- $\mathbf{w}_{u_{2,1}}=x^{3} y+y^{2} x+u_{2,1} x^{2} y$,
- $\mathbf{w}_{u_{1,1}}=x^{3} y+y^{2} x+u_{1,1} x y$.

In this case, we have that $\operatorname{deg} x=1, \operatorname{deg} y=2=\operatorname{deg} z$, and $\operatorname{deg} \mathbf{w}=5$.
Therefore $\mathbf{w}_{u_{2,1}} \notin U_{+}$, but $\mathbf{w}_{u_{1,1}} \in U_{+}$, since

$$
\mathbf{W}_{u_{1,1}}=x^{3} y+y^{2} x+u_{1,1} x y z
$$

is quasi-homogeneous of degree 5 .

The B-side part II

For each $u \in U_{+}$, we can then define

$$
Y_{u}=\left[\left(\mathbf{W}_{u}^{-1}(0) \backslash(0)\right) / \Gamma_{\mathbf{w}}\right] .
$$

The B-side part II

For each $u \in U_{+}$, we can then define

$$
Y_{u}=\left[\left(\mathbf{W}_{u}^{-1}(0) \backslash(0)\right) / \Gamma_{\mathbf{w}}\right] .
$$

For each $u \in U_{+}$, there is a natural pushforward functor

$$
\operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) \rightarrow \operatorname{mf}\left(\mathbb{A}^{3}, \Gamma_{\mathbf{w}}, \mathbf{W}_{u}\right) \simeq D^{b}\left(\operatorname{Coh} Y_{u}\right)
$$

The B-side part II

For each $u \in U_{+}$, we can then define

$$
Y_{u}=\left[\left(\mathbf{W}_{u}^{-1}(0) \backslash(0)\right) / \Gamma_{\mathbf{w}}\right] .
$$

For each $u \in U_{+}$, there is a natural pushforward functor

$$
\operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) \rightarrow \operatorname{mf}\left(\mathbb{A}^{3}, \Gamma_{\mathbf{w}}, \mathbf{W}_{u}\right) \simeq D^{b}\left(\operatorname{Coh} Y_{u}\right)
$$

Let \mathcal{S}_{u} be the image of \mathcal{E} under the pushforward functor. At the level of cohomology,

$$
\operatorname{End}\left(\mathcal{S}_{u}\right)=A^{\rightarrow} \oplus\left(A^{\rightarrow}\right)^{\vee}[-1]=A
$$

with the multiplication as before (Ueda '12).

The B-side part II

For each $u \in U_{+}$, we can then define

$$
Y_{u}=\left[\left(\mathbf{W}_{u}^{-1}(0) \backslash(0)\right) / \Gamma_{\mathbf{w}}\right]
$$

For each $u \in U_{+}$, there is a natural pushforward functor

$$
\operatorname{mf}\left(\mathbb{A}^{2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right) \rightarrow \operatorname{mf}\left(\mathbb{A}^{3}, \Gamma_{\mathbf{w}}, \mathbf{W}_{u}\right) \simeq D^{b}\left(\operatorname{Coh} Y_{u}\right)
$$

Let \mathcal{S}_{u} be the image of \mathcal{E} under the pushforward functor. At the level of cohomology,

$$
\operatorname{End}\left(\mathcal{S}_{u}\right)=A^{\rightarrow} \oplus\left(A^{\rightarrow}\right)^{\vee}[-1]=A
$$

with the multiplication as before (Ueda '12).

Key point

This is independent of $u \in U_{+}$!

The B-side part II

Lekili-Ueda show that \mathcal{S}_{u} split generates perf Y_{u}.

The B-side part II

Lekili-Ueda show that \mathcal{S}_{u} split generates perf Y_{u}. Let

$$
\mathcal{A}_{u}:=\operatorname{end}\left(\mathcal{S}_{u}\right)
$$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_{u}.

The B-side part II

Lekili-Ueda show that \mathcal{S}_{u} split generates perf Y_{u}. Let

$$
\mathcal{A}_{u}:=\operatorname{end}\left(\mathcal{S}_{u}\right)
$$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_{u}. We get a map

$$
U_{+} \rightarrow \mathcal{U}_{\infty}(A) .
$$

The B-side part II

Lekili-Ueda show that \mathcal{S}_{u} split generates perf Y_{u}. Let

$$
\mathcal{A}_{u}:=\operatorname{end}\left(\mathcal{S}_{u}\right)
$$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_{u}. We get a map

$$
U_{+} \rightarrow \mathcal{U}_{\infty}(A) .
$$

Polynomial untwisted \Longrightarrow This is an isomorphism.

Recap

The story so far

- On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.

Recap

The story so far

- On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.
- On the B -side, we have identified a family of curves such that:
(1) The A_{∞} algebra of the object which split generates perf Y_{u} defines an A_{∞}-structure on A.

Recap

The story so far

- On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.
- On the B -side, we have identified a family of curves such that:
(1) The A_{∞} algebra of the object which split generates perf Y_{u} defines an A_{∞}-structure on A.
(2) Every A_{∞}-structure on A arises as the chain-level endomorphism algebra of a generating object of perf Y_{u} for some $u \in U_{+}$.

Identifying the mirror

Theorem 3 (Lekili-Ueda '18)

Let $\check{\mathbf{w}}$ be the transpose of an invertible polynomial such that \check{V} is of log general type. Then

$$
\mathrm{SH}^{*}(\check{V}) \simeq \operatorname{HH}^{*}(\mathcal{F}(\check{V})) .
$$

Identifying the mirror

Sketch of proof of Theorem 1.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^{*}(\check{V}) \simeq \mathrm{HH}^{*}\left(Y_{u}\right)$.

Identifying the mirror

Sketch of proof of Theorem 1.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^{*}(\check{V}) \simeq \mathrm{HH}^{*}\left(Y_{u}\right)$.
- Compute $\mathrm{SH}^{*}(\check{V})$. This can be read off from the grading structure of \check{V}.

Identifying the mirror

Sketch of proof of Theorem 1.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^{*}(\check{V}) \simeq \mathrm{HH}^{*}\left(Y_{u}\right)$.
- Compute $\mathrm{SH}^{*}(\check{V})$. This can be read off from the grading structure of \check{V}.
- Compute $\mathrm{HH}^{*}\left(Y_{u}\right)$, which can be done combinatorially. Note that $\mathrm{HH}^{*}\left(Y_{0}\right) \simeq \mathrm{HH}^{*}(A)$.

Identifying the mirror

Sketch of proof of Theorem 1.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^{*}(\check{V}) \simeq \mathrm{HH}^{*}\left(Y_{u}\right)$.
- Compute $\mathrm{SH}^{*}(\check{V})$. This can be read off from the grading structure of \check{V}.
- Compute $\mathrm{HH}^{*}\left(Y_{u}\right)$, which can be done combinatorially. Note that $\mathrm{HH}^{*}\left(Y_{0}\right) \simeq \mathrm{HH}^{*}(A)$.
- Unless $u=u_{1,1}$, we have that rank $\operatorname{HH}^{*}\left(Y_{u}\right)<\operatorname{rank} \mathrm{SH}^{*}(\check{V})$.

Identifying the mirror

Sketch of proof of Theorem 1.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^{*}(\check{V}) \simeq \mathrm{HH}^{*}\left(Y_{u}\right)$.
- Compute $\mathrm{SH}^{*}(\check{V})$. This can be read off from the grading structure of \check{V}.
- Compute $\mathrm{HH}^{*}\left(Y_{u}\right)$, which can be done combinatorially. Note that $\mathrm{HH}^{*}\left(Y_{0}\right) \simeq \mathrm{HH}^{*}(A)$.
- Unless $u=u_{1,1}$, we have that rank $\operatorname{HH}^{*}\left(Y_{u}\right)<$ rank $\mathrm{SH}^{*}(\check{V})$.
- Since we know that there must be a $u \in U_{+}$for which Y_{u} is mirror to \check{V}, the only possibility is $u=u_{1,1}$, and $Y_{u}=Z_{w}$.

The end

Thank you!

