Homological mirror symmetry for invertible polynomials in two variables

Matthew Habermann

October 8, 2020

Let $A = (a_{ij})$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$\mathbf{w} = \sum_{i=1}^n \prod_{j=1}^n x^{\mathbf{a}_{ij}}.$$

Let $A = (a_{ij})$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$\mathbf{w} = \sum_{i=1}^n \prod_{j=1}^n x^{a_{ij}}.$$

We can also associate a polynomial to A^{T} , called the *Berglund–Hübsch transpose*, defined as

$$\check{\mathbf{w}} = \sum_{i=1}^n \prod_{j=1}^n \check{x}^{\mathbf{a}_{ji}}.$$

Let $A = (a_{ij})$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$\mathbf{w} = \sum_{i=1}^n \prod_{j=1}^n x^{\mathbf{a}_{ij}}.$$

We can also associate a polynomial to A^{T} , called the *Berglund–Hübsch transpose*, defined as

$$\check{\mathbf{w}} = \sum_{i=1}^n \prod_{j=1}^n \check{x}^{\mathbf{a}_{ji}}.$$

Example 1

Let
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
. Then $\mathbf{w} = x^3y + y^2$, and $\check{\mathbf{w}} = x^3 + y^2 x$.

Let $A = (a_{ij})$ be an invertible $n \times n$ matrix with integer coefficients. To any such A, we can associate a polynomial

$$\mathbf{w} = \sum_{i=1}^n \prod_{j=1}^n x^{a_{ij}}.$$

We can also associate a polynomial to A^T , called the *Berglund–Hübsch transpose*, defined as

$$\check{\mathbf{w}} = \sum_{i=1}^n \prod_{j=1}^n \check{x}^{a_{ji}}.$$

Example 1

Let
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
. Then $\mathbf{w} = x^3y + y^2$, and $\check{\mathbf{w}} = x^3 + y^2 x$.

Definition 2

Let A, w, and \check{w} be as above. If both w and \check{w} define isolated singularities at the origin, and are both quasi-homogeneous, then we say that w is invertible.

• Fermat: $x_1^{p_1}$

- Fermat: $x_1^{p_1}$
- Chain: $x_1^{p_1}x_2 + x_2^{p_2}x_3 + \dots + x_{n-1}^{p_{n-1}}x_n + x_n^{p_n}$

- Fermat: $x_1^{p_1}$
- Chain: $x_1^{p_1}x_2 + x_2^{p_2}x_3 + \dots + x_{n-1}^{p_{n-1}}x_n + x_n^{p_n}$
- Loop: $x_1^{p_1}x_2 + x_2^{p_2}x_3 + \dots + x_n^{p_n}x_1$

- Fermat: $x_1^{p_1}$
- Chain: $x_1^{p_1}x_2 + x_2^{p_2}x_3 + \dots + x_{n-1}^{p_{n-1}}x_n + x_n^{p_n}$
- Loop: $x_1^{p_1}x_2 + x_2^{p_2}x_3 + \dots + x_n^{p_n}x_1$

Example 3

Let
$$A = \begin{pmatrix} \ell & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 be the matrix which yields $\mathbf{w} = x^{\ell} + xy^2 + z^2$, the $D_{\ell-1}$ singularity. This is the Thom–Sebastiani sum of a chain and Fermat polynomial.

The maximal symmetry group is defined as:

$$\Gamma_{\mathbf{w}} := \{ (t_1, \ldots, t_{n+1}) \in (\mathbb{C}^*)^{n+1} | \mathbf{w}(t_1 x_1, \ldots, t_n x_n) = t_{n+1} \mathbf{w}(x_1, \ldots, x_n) \}.$$

In general, $\Gamma_{\boldsymbol{w}}$ is a finite extension of $\mathbb{C}^*.$

The maximal symmetry group is defined as:

$$\Gamma_{\mathbf{w}} := \{ (t_1, \ldots, t_{n+1}) \in (\mathbb{C}^*)^{n+1} | \mathbf{w}(t_1 x_1, \ldots, t_n x_n) = t_{n+1} \mathbf{w}(x_1, \ldots, x_n) \}.$$

In general, Γ_w is a finite extension of $\mathbb{C}^*.$

Conjecture 1 (Takahashi '10, Ueda '06, Futaki–Ueda '11, Lekili-Ueda '18)

For any invertible polynomial \mathbf{w} , there is a quasi-equivalence

$$\mathcal{FS}(\check{\mathbf{w}}) \simeq \mathrm{mf}(\mathbb{A}^n, \Gamma_{\mathbf{w}}, \mathbf{w})$$

of pre-triangulated A_{∞} categories over \mathbb{C} .

Consider \check{V} the Milnor fibre of $\check{\boldsymbol{w}},$ and

$$Z_w := [(\operatorname{Spec} \mathbb{C}[x_0, \ldots, x_n]/(w + x_0 x_1 \ldots x_n) \setminus (0))/\Gamma_w].$$

Consider \check{V} the Milnor fibre of \check{w} , and

$$Z_w := [(\operatorname{Spec} \mathbb{C}[x_0, \ldots, x_n]/(w + x_0 x_1 \ldots x_n) \setminus (0))/\Gamma_w].$$

Conjecture 2 (Lekili-Ueda '18)

For any invertible polynomial \mathbf{w} of log general type, there is a quasi-equivalence

$$\mathcal{F}(\check{V})\simeq \mathsf{perf}\ Z_{f w}, \ \mathcal{W}(\check{V})\simeq D^b(\mathit{Coh}\ Z_{f w})$$

of pre-triangulated A_{∞} -categories over \mathbb{C} .

For the rest of the talk, we will restrict ourselves to n = 2.

Theorem 1 (Smith – H. '19)

For ${\bf w}$ an invertible polynomial in two variables, there is a quasi-equivalence

$$\mathcal{FS}(\check{\mathbf{w}}) \simeq \mathrm{mf}(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w})$$

of pre-triangulated A_{∞} categories over \mathbb{C} .

Theorem 2 (H. '20)

Let ${\bf w}$ be an invertible polynomial in two variables. Then there is a quasi-equivalence

$$\mathcal{F}(\check{V}) \simeq \mathsf{perf}\, Z_{\mathsf{w}}$$

of pre-triangulated A_{∞} categories over \mathbb{C} .

Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras,

Curves with non-empty boundary and stops \leftrightarrow Gentle algebras, Partially wrapped Fukaya categories \leftrightarrow $D^b(A - mod)$, Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras, Partially wrapped Fukaya categories $\longleftrightarrow D^b(A - mod)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation, Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras, Partially wrapped Fukaya categories $\longleftrightarrow D^b(A - mod)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation, Compact Lagrangians \longleftrightarrow Band modules, Curves with non-empty boundary and stops \longleftrightarrow Gentle algebras, Partially wrapped Fukaya categories $\longleftrightarrow D^b(A - mod)$, Rotating endpoints \longleftrightarrow Auslander-Reiten translation, Compact Lagrangians \longleftrightarrow Band modules, Non-compact Lagrangians \longleftrightarrow String modules

The B-side part I

Let $\mathbf{w} = \check{\mathbf{w}} = x^p y + y^q x$ with $p \ge q \ge 2$.

$$HMF(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) \simeq D^b_{sing}([\mathbf{w}^{-1}(0)/\Gamma_{\mathbf{w}}])$$

 $\simeq \langle \mathcal{C}, D^b(Y) \rangle,$

where Y is the projectivised stack $[(\mathbf{w}^{-1}(0) \setminus \{0\})/\Gamma_{\mathbf{w}}]$, and C is a subcategory of certain graded shifts of the origin.

$$\begin{split} HMF(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) &\simeq D^b_{\text{sing}}([\mathbf{w}^{-1}(0)/\Gamma_{\mathbf{w}}]) \\ &\simeq \langle \mathcal{C}, D^b(Y) \rangle, \end{split}$$

where Y is the projectivised stack $[(\mathbf{w}^{-1}(0) \setminus \{0\})/\Gamma_{\mathbf{w}}]$, and C is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

• The p-1 objects corresponding to the structure sheaf of the line x = 0,

$$\begin{split} HMF(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) &\simeq D^b_{\text{sing}}([\mathbf{w}^{-1}(0)/\Gamma_{\mathbf{w}}]) \\ &\simeq \langle \mathcal{C}, D^b(Y) \rangle, \end{split}$$

where Y is the projectivised stack $[(\mathbf{w}^{-1}(0) \setminus \{0\})/\Gamma_{\mathbf{w}}]$, and C is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The p-1 objects corresponding to the structure sheaf of the line x = 0,
- The q-1 objects corresponding to the structure sheaf of the line y = 0,

$$\begin{split} HMF(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) &\simeq D^b_{\text{sing}}([\mathbf{w}^{-1}(0)/\Gamma_{\mathbf{w}}]) \\ &\simeq \langle \mathcal{C}, D^b(Y) \rangle, \end{split}$$

where Y is the projectivised stack $[(\mathbf{w}^{-1}(0) \setminus \{0\})/\Gamma_{\mathbf{w}}]$, and C is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The p-1 objects corresponding to the structure sheaf of the line x = 0,
- The q-1 objects corresponding to the structure sheaf of the line y = 0,
- The object corresponding to the structure sheaf of the line $x^{p-1} + y^{q-1} = 0$, and

$$\begin{split} HMF(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) &\simeq D^b_{\text{sing}}([\mathbf{w}^{-1}(0)/\Gamma_{\mathbf{w}}]) \\ &\simeq \langle \mathcal{C}, D^b(Y) \rangle, \end{split}$$

where Y is the projectivised stack $[(\mathbf{w}^{-1}(0) \setminus \{0\})/\Gamma_{\mathbf{w}}]$, and C is a subcategory of certain graded shifts of the origin. Define \mathcal{E} be the direct sum of the objects corresponding to:

- The p-1 objects corresponding to the structure sheaf of the line x = 0,
- The q-1 objects corresponding to the structure sheaf of the line y = 0,
- The object corresponding to the structure sheaf of the line $x^{p-1} + y^{q-1} = 0$, and
- The (p-1)(q-1) objects corresponding to the structure sheaf of the origin and its fattenings.

We define

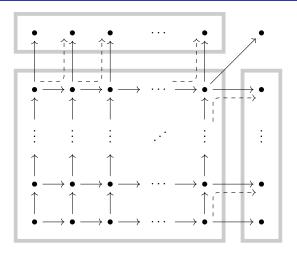
 $A^{\rightarrow} = \mathsf{End}\ \mathcal{E}.$

We define

 $A^{\rightarrow}=\mathsf{End}\ \mathcal{E}.$

This is given as the path algebra of the following quiver with relations:

The B-side part I



Relations:

- (i) Squares commute
- (ii) Dashed compositions vanish

• Show that \mathcal{E} split generates HMF($\mathbb{A}^2, \Gamma_w, w$)

- Show that \mathcal{E} split generates HMF($\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}$)
- \bullet Observe that End ${\cal E}$ is concentrated in degree 0 \implies Intrinsically formal

- Show that ${\mathcal E}$ split generates $\mathsf{HMF}({\mathbb A}^2, \Gamma_{{\boldsymbol{w}}}, {\boldsymbol{w}})$
- \bullet Observe that End ${\cal E}$ is concentrated in degree 0 \implies Intrinsically formal
- Therefore, split generates $mf(\mathbb{A}^2, \Gamma_{\boldsymbol{w}}, \boldsymbol{w})$.

- Show that ${\mathcal E}$ split generates $\mathsf{HMF}({\mathbb A}^2, \Gamma_{{\bm w}}, {\bm w})$
- \bullet Observe that End ${\cal E}$ is concentrated in degree 0 \implies Intrinsically formal
- Therefore, split generates $mf(\mathbb{A}^2, \Gamma_w, w)$.
- Construct a Lefschetz fibration whose vanishing cycles match.

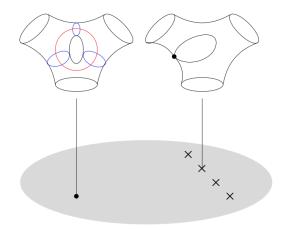


Figure: Lefschetz fibration corresponding to $x^2y + y^2x$

There is a restriction functor

$$\mathcal{F}(\check{\mathbf{w}}) \to \mathcal{F}(\check{V}),$$

 $\Delta_i \mapsto \partial \Delta_i =: V_i,$

where the vanishing cycle V_i is equipped with the induced (non-trivial) spin structure.

There is a restriction functor

$$egin{aligned} \mathcal{F}(\check{oldsymbol{w}}) &
ightarrow \mathcal{F}(\check{V}), \ \Delta_i &\mapsto \partial \Delta_i =: V_i, \end{aligned}$$

where the vanishing cycle V_i is equipped with the induced (non-trivial) spin structure. At the level of cohomology, we have that

$$A := \operatorname{End}(igoplus_{i=1}^{pq} V_i) = A^{
ightarrow} \oplus (A^{
ightarrow})^{arphi} [-1],$$

where multiplication is given by

$$(a, f) \cdot (b, g) = (ab, ag + fb).$$

There is a restriction functor

$$egin{aligned} \mathcal{F}(\check{oldsymbol{W}}) &
ightarrow \mathcal{F}(\check{V}), \ \Delta_i &\mapsto \partial \Delta_i =: V_i, \end{aligned}$$

where the vanishing cycle V_i is equipped with the induced (non-trivial) spin structure. At the level of cohomology, we have that

$$A := \operatorname{End}(\bigoplus_{i=1}^{pq} V_i) = A^{\rightarrow} \oplus (A^{\rightarrow})^{\vee}[-1],$$

where multiplication is given by

$$(a, f) \cdot (b, g) = (ab, ag + fb).$$

This is the trivial extension algebra of degree 1 of A^{\rightarrow} .

For all loop polynomials, $\bigoplus_{i=1}^{pq} V_i$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).

For all loop polynomials, $\bigoplus_{i=1}^{pq} V_i$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).

Key point

In order to characterise $\mathcal{F}(\check{V})$, it is enough to understand the chain level A_{∞} - structure of the endomorphism algebra of $\bigoplus_{i=1}^{pq} V_i$.

For all loop polynomials, $\bigoplus_{i=1}^{pq} V_i$ split generates $\mathcal{F}(\check{V})$ (Seidel '00).

Key point

In order to characterise $\mathcal{F}(\check{V})$, it is enough to understand the chain level A_{∞} - structure of the endomorphism algebra of $\bigoplus_{i=1}^{pq} V_i$.

It is not formal!

For all loop polynomials, $\bigoplus_{i=1}^{pq} V_i$ split generates $\mathcal{F}(\check{V})$ (Seidel).

Key point

In order to characterise $\mathcal{F}(\check{V})$, it is enough to understand the chain level A_{∞} - structure of the endomorphism algebra of $\bigoplus_{i=1}^{pq} V_i$.

It is not formal!

Implication

The subcategory of band modules of the corresponding gentle algebra has non-trivial higher products.

Let A be a graded algebra, and consider the set of minimal A_{∞} -structures on the algebra.

• If $HH^1(A)_{<0} = 0$, then the set of A_{∞} structres on A is parametrised by an affine scheme, $\mathcal{U}_{\infty}(A)$.

- If HH¹(A)_{<0} = 0, then the set of A_∞ structres on A is parametrised by an affine scheme, U_∞(A).
- If dim $HH^2(A)_{<0} < \infty$, then this scheme is of finite type.

- If HH¹(A)_{<0} = 0, then the set of A_∞ structres on A is parametrised by an affine scheme, U_∞(A).
- If dim $HH^2(A)_{<0} < \infty$, then this scheme is of finite type.

Strategy of proof

• Identify a family of curves, each of which defines an A_{∞} -structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.

- If HH¹(A)_{<0} = 0, then the set of A_∞ structres on A is parametrised by an affine scheme, U_∞(A).
- If dim $HH^2(A)_{<0} < \infty$, then this scheme is of finite type.

Strategy of proof

- Identify a family of curves, each of which defines an A_{∞} -structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.
- Show that this realises every A_{∞} structure on A.

- If HH¹(A)_{<0} = 0, then the set of A_∞ structres on A is parametrised by an affine scheme, U_∞(A).
- If dim $HH^2(A)_{<0} < \infty$, then this scheme is of finite type.

Strategy of proof

- Identify a family of curves, each of which defines an A_{∞} -structure on A, and which is parametrised by $\mathcal{U}_{\infty}(A)$.
- Show that this realises every A_{∞} structure on A.
- Deduce the mirror by computable invariants.

Consider

•
$$\mathbf{w} = x^p y + y^q x$$
 with $gcd(p-1, q-1) = 1$ (so that $\Gamma_{\mathbf{w}} \simeq \mathbb{C}^*$)

Consider

•
$$\mathbf{w} = x^p y + y^q x$$
 with $gcd(p-1, q-1) = 1$ (so that $\Gamma_{\mathbf{w}} \simeq \mathbb{C}^*$)

• deg
$$w = pq - 1$$
, deg $x = q - 1$, deg $y = p - 1$

Consider

- $\mathbf{w} = x^p y + y^q x$ with gcd(p-1, q-1) = 1 (so that $\Gamma_{\mathbf{w}} \simeq \mathbb{C}^*$)
- deg w = pq 1, deg x = q 1, deg y = p 1
- Jac_w is the Jacobian of **w**.

Consider

•
$$\mathbf{w} = x^p y + y^q x$$
 with $gcd(p-1, q-1) = 1$ (so that $\Gamma_{\mathbf{w}} \simeq \mathbb{C}^*$)

• deg
$$w = pq - 1$$
, deg $x = q - 1$, deg $y = p - 1$

• Jac_w is the Jacobian of **w**.

The semi-universal unfoldings of w are given by

$$\tilde{\mathbf{w}} = \mathbf{w} + \sum_{(i,j)\in J_{\mathbf{w}}} u_{ij} x^i y^j$$

with $U = \operatorname{Spec} \mathbb{C}[u_1, \ldots, u_{\mu}]$ its parameter space.

Consider

•
$$\mathbf{w} = x^p y + y^q x$$
 with $gcd(p-1, q-1) = 1$ (so that $\Gamma_{\mathbf{w}} \simeq \mathbb{C}^*$)

• deg
$$w = pq - 1$$
, deg $x = q - 1$, deg $y = p - 1$

• Jac_w is the Jacobian of **w**.

The semi-universal unfoldings of w are given by

$$\tilde{\mathbf{w}} = \mathbf{w} + \sum_{(i,j)\in J_{\mathbf{w}}} u_{ij} x^i y^j$$

with $U = \operatorname{Spec} \mathbb{C}[u_1, \dots, u_{\mu}]$ its parameter space. Therefore, $ilde{\mathbf{w}}$ is a map

$$\tilde{\mathbf{w}}:\mathbb{C}^2\times U\to\mathbb{C},$$

and we define

$$\mathbf{w}_u := \tilde{\mathbf{w}}|_{\mathbb{C}^2 \times \{u\}}.$$

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1).

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

Define $U_+ \subseteq U$ to be those $u \in U$ such that \mathbf{w}_u can be quasi-homogenised.

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

Define $U_+ \subseteq U$ to be those $u \in U$ such that \mathbf{w}_u can be quasi-homogenised.

Example 4

In the case of $\mathbf{w} = x^3 y + y^2 x$, we have

•
$$\mathbf{w}_{u_{2,1}} = x^3 y + y^2 x + u_{2,1} x^2 y$$
,

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

Define $U_+ \subseteq U$ to be those $u \in U$ such that \mathbf{w}_u can be quasi-homogenised.

Example 4

In the case of $\mathbf{w} = x^3y + y^2x$, we have

•
$$\mathbf{w}_{u_{2,1}} = x^3 y + y^2 x + u_{2,1} x^2 y_3$$

•
$$\mathbf{w}_{u_{1,1}} = x^3 y + y^2 x + u_{1,1} x y$$

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

Define $U_+ \subseteq U$ to be those $u \in U$ such that \mathbf{w}_u can be quasi-homogenised.

Example 4

In the case of $\mathbf{w} = x^3 y + y^2 x$, we have

•
$$\mathbf{w}_{u_{2,1}} = x^3 y + y^2 x + u_{2,1} x^2 y$$

•
$$\mathbf{w}_{u_{1,1}} = x^3 y + y^2 x + u_{1,1} x y$$

In this case, we have that deg x = 1, deg $y = 2 = \deg z$, and deg $\mathbf{w} = 5$.

We need to quasi-homogenise each \mathbf{w}_u to get $\mathbf{W}_u \in \mathbb{C}[x, y, z]$.

To do this, define z to have weight (p-1)(q-1). This is done so that

$$\deg x + \deg y + \deg z = \deg \mathbf{W}_u = pq - 1$$

Define $U_+ \subseteq U$ to be those $u \in U$ such that \mathbf{w}_u can be quasi-homogenised.

Example 4

In the case of $\mathbf{w} = x^3 y + y^2 x$, we have

•
$$\mathbf{w}_{u_{2,1}} = x^3 y + y^2 x + u_{2,1} x^2 y$$

•
$$\mathbf{w}_{u_{1,1}} = x^3 y + y^2 x + u_{1,1} x y$$

In this case, we have that deg x = 1, deg $y = 2 = \deg z$, and deg $\mathbf{w} = 5$. Therefore $\mathbf{w}_{u_{2,1}} \notin U_+$, but $\mathbf{w}_{u_{1,1}} \in U_+$, since

$$\mathbf{W}_{u_{1,1}} = x^3 y + y^2 x + u_{1,1} x y z$$

is quasi-homogeneous of degree 5.

For each $u \in U_+$, we can then define

$$Y_u = \big[\big(\mathbf{W}_u^{-1}(0) \setminus (0) \big) / \Gamma_{\mathbf{w}} \big].$$

For each $u \in U_+$, we can then define

$$Y_u = \big[\big(\mathbf{W}_u^{-1}(0) \setminus (0) \big) / \Gamma_{\mathbf{w}} \big].$$

For each $u \in U_+$, there is a natural pushforward functor

$$\operatorname{mf}(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) \to \operatorname{mf}(\mathbb{A}^3, \Gamma_{\mathbf{w}}, \mathbf{W}_u) \simeq D^b(\operatorname{Coh} Y_u).$$

For each $u \in U_+$, we can then define

$$Y_u = \big[\big(\mathbf{W}_u^{-1}(0) \setminus (0) \big) / \Gamma_{\mathbf{w}} \big].$$

For each $u \in U_+$, there is a natural pushforward functor

$$\operatorname{mf}(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) \to \operatorname{mf}(\mathbb{A}^3, \Gamma_{\mathbf{w}}, \mathbf{W}_u) \simeq D^b(\operatorname{Coh} Y_u).$$

Let \mathcal{S}_u be the image of \mathcal{E} under the pushforward functor. At the level of cohomology,

$$\operatorname{End}(\mathcal{S}_u) = A^{\rightarrow} \oplus (A^{\rightarrow})^{\vee}[-1] = A$$

with the multiplication as before (Ueda '12).

For each $u \in U_+$, we can then define

$$Y_u = \big[\big(\mathbf{W}_u^{-1}(0) \setminus (0) \big) / \Gamma_{\mathbf{w}} \big].$$

For each $u \in U_+$, there is a natural pushforward functor

$$\operatorname{mf}(\mathbb{A}^2, \Gamma_{\mathbf{w}}, \mathbf{w}) \to \operatorname{mf}(\mathbb{A}^3, \Gamma_{\mathbf{w}}, \mathbf{W}_u) \simeq D^b(\operatorname{Coh} \, Y_u).$$

Let \mathcal{S}_u be the image of \mathcal{E} under the pushforward functor. At the level of cohomology,

$$\operatorname{End}(\mathcal{S}_u) = A^{\rightarrow} \oplus (A^{\rightarrow})^{\vee}[-1] = A$$

with the multiplication as before (Ueda '12).

Key point

This is independent of $u \in U_+$!

Lekili–Ueda show that S_u split generates perf Y_u .

Lekili–Ueda show that S_u split generates perf Y_u . Let

 $\mathcal{A}_u := \mathsf{end}(\mathcal{S}_u)$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_u .

Lekili–Ueda show that S_u split generates perf Y_u . Let

 $\mathcal{A}_u := \mathsf{end}(\mathcal{S}_u)$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_u . We get a map

 $U_+ \rightarrow \mathcal{U}_{\infty}(A).$

Lekili–Ueda show that S_u split generates perf Y_u . Let

 $\mathcal{A}_u := \operatorname{end}(\mathcal{S}_u)$

be the minimal A_{∞} endomorphism algebra of \mathcal{S}_u . We get a map

 $U_+ \rightarrow \mathcal{U}_{\infty}(A).$

Polynomial untwisted \implies This is an isomorphism.

The story so far

• On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.

The story so far

- On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.
- On the B-side, we have identified a family of curves such that:
 - The A_{∞} algebra of the object which split generates perf Y_u defines an A_{∞} -structure on A.

The story so far

- On the A-side, we have identified a split-generator of $\mathcal{F}(\check{V})$ whose cohomology level endomorphism algebra is given by A.
- On the B-side, we have identified a family of curves such that:
 - The A_{∞} algebra of the object which split generates perf Y_u defines an A_{∞} -structure on A.
 - **3** Every A_{∞} -structure on A arises as the chain-level endomorphism algebra of a generating object of perf Y_u for some $u \in U_+$.

Theorem 3 (Lekili–Ueda '18)

Let $\check{\bm w}$ be the transpose of an invertible polynomial such that \check{V} is of log general type. Then

 $\operatorname{SH}^*(\check{V}) \simeq \operatorname{HH}^*(\mathcal{F}(\check{V})).$

 By the above theorem, a necessary condition for the a candidate mirror is that SH^{*}(Ṽ) ≃ HH^{*}(Y_u).

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^*(\check{V}) \simeq \mathrm{HH}^*(Y_u)$.
- Compute $\operatorname{SH}^*(\check{V})$. This can be read off from the grading structure of \check{V} .

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^*(\check{V}) \simeq \mathrm{HH}^*(Y_u)$.
- Compute $\operatorname{SH}^*(\check{V})$. This can be read off from the grading structure of \check{V} .
- Compute $\operatorname{HH}^*(Y_u)$, which can be done combinatorially. Note that $\operatorname{HH}^*(Y_0) \simeq \operatorname{HH}^*(A)$.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^*(\check{V}) \simeq \mathrm{HH}^*(Y_u)$.
- Compute $\operatorname{SH}^*(\check{V})$. This can be read off from the grading structure of \check{V} .
- Compute $\operatorname{HH}^*(Y_u)$, which can be done combinatorially. Note that $\operatorname{HH}^*(Y_0) \simeq \operatorname{HH}^*(A)$.
- Unless $u = u_{1,1}$, we have that rank $\operatorname{HH}^*(Y_u) < \operatorname{rank} \operatorname{SH}^*(\check{V})$.

- By the above theorem, a necessary condition for the a candidate mirror is that $\mathrm{SH}^*(\check{V}) \simeq \mathrm{HH}^*(Y_u)$.
- Compute $\operatorname{SH}^*(\check{V})$. This can be read off from the grading structure of \check{V} .
- Compute $\operatorname{HH}^*(Y_u)$, which can be done combinatorially. Note that $\operatorname{HH}^*(Y_0) \simeq \operatorname{HH}^*(A)$.
- Unless $u = u_{1,1}$, we have that rank $\operatorname{HH}^*(Y_u) < \operatorname{rank} \operatorname{SH}^*(\check{V})$.
- Since we know that there *must* be a u ∈ U₊ for which Y_u is mirror to V

 , the only possibility is u = u_{1,1}, and Y_u = Z_w.

Thank you!