τ -Tilting Finite Algebras With Non Empty Left or Right Parts are Representation-Finite

Stephen M. Zito

Department of Mathematics University of Connecticut FD Seminar Online

October 1st, 2020

Stephen M. Zito τ-Tilting Finite Algebras With Non Empty Left or Right Parts are R

ヘロト ヘアト ヘビト ヘビト

Introduction: τ -Tilting Theory

 τ -tilting theory was introduced by Adachi, Iyama and Reiten [1] as a far-reaching generalization of classical tilting theory for finite dimensional associative algebras. One of the main classes of objects in the theory is that of τ -rigid modules: a module *M* over an algebra Λ is τ -*rigid* if Hom_Λ(*M*, τ *M*) = 0, such a module *M* is called τ -*tilting* if the number |*M*| of non-isomorphic indecomposable summands of *M* equals the number of isomorphism classes of simple Λ-modules.

イロト イ押ト イヨト イヨト

Introduction: τ -Tilting Finite Algebras

Recently, a new class of algebras were introduced by Demonet, lyama, Jasso [10] called τ -*tilting finite* algebras. They are defined as finite dimensional algebras with only a finite number of isomorphism classes of basic τ -tilting modules.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction: Significance

If Λ is a τ -tilting finite algebra:

- There are finitely many support τ -tilting modules. [10].
- Every torsion class is functorially finite [10].
- There are finitely many bricks in its module category [10].
- The representation theory is easier to understand.

イロト イ押ト イヨト イヨト

Introduction: Goal

An obvious sufficient condition to be τ -tilting finite is to be representation-finite. In general, this condition is not necessary. The aim of this talk is to prove for algebras Λ such that \mathcal{L}_{Λ} or $\mathcal{R}_{\Lambda} \neq \emptyset$, representation-finiteness and τ -tilting finiteness are equivalent conditions.

Theorem 1.

Let Λ be a finite dimensional algebra such that \mathcal{L}_{Λ} or $\mathcal{R}_{\Lambda} \neq \emptyset$. Then Λ is τ -tilting finite if and only if Λ is representation-finite.

ヘロン 人間 とくほ とくほ とう

Introduction: Notation

- Λ is f. d. over an algebraically closed field k.
- mod Λ.
- ind Λ.
- add *M*.
- Gen *M*.
- Cogen M.
- Γ(mod Λ).
- $pd_{\Lambda}M$ and $id_{\Lambda}M$.

・聞き ・ヨト ・ヨト

æ

Torsion Pairs: Definition

For a subcategory C of mod Λ we let

$$C^{\perp} := \{ X \in \mathsf{mod} \, \Lambda | \mathsf{Hom}_{\Lambda}(C, X) = 0 \}.$$

Dually, we define ${}^{\perp}C$. We say a full subcategory \mathcal{T} of mod Λ is a *torsion class* (respectively *torsionfree class*) if it is closed under factor modules (respectively, submodules) and extensions. A pair $(\mathcal{T}, \mathcal{F})$ is called a *torsion pair* if $\mathcal{T} = {}^{\perp}\mathcal{F}$ and $\mathcal{F} = \mathcal{T}^{\perp}$. In this case \mathcal{T} is a torsion class and \mathcal{F} is a torsion free class.

Torsion Pairs: Ext-Projectives and Ext-Injectives

We say $X \in \mathcal{T}$ is Ext-*projective* (respectively, Ext-*injective*) if $\operatorname{Ext}^{1}_{\Lambda}(X,\mathcal{T}) = 0$ (respectively, $\operatorname{Ext}^{1}_{\Lambda}(\mathcal{T},X) = 0$). Denote by $P(\mathcal{T})$ the direct sum of one copy of each of the indecomposable Ext-projective objects in \mathcal{T} up to isomorphism. Similarly, denote by $I(\mathcal{F})$ the direct sum of one copy of each of the indecomposable Ext-injective objects in \mathcal{F} up to isomorphism.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Torsion Pairs: Contravariantly and Covariantly Finite

We recall that a full additive subcategory *C* of mod Λ is called *contravariantly finite* if, for any Λ -module *M*, there exists a morphism $f_C : M_C \longrightarrow M$ such that $M_C \in C$ and, if $f : N \longrightarrow M$ is any morphism with $N \in C$, then there exists $g : N \longrightarrow M_C$ such that $f = f_C g$. The dual notion is that of *covariantly finite*. If *C* is both contravariantly and covariantly finite, then *C* is *functorially finite*.

(ロ) (同) (三) (三) (三) (○)

Torsion Pairs: Functorially Finite

Proposition 2 ([9], [11], [13]).

Let $(\mathcal{T}, \mathcal{F})$ be a torsion pair in mod Λ . Then the following are equivalent:

- (a) T is functorially finite.
- (b) \mathcal{F} is functorially finite.

(c)
$$\mathcal{T} = \operatorname{Gen} P(\mathcal{T}).$$

(d) $\mathcal{F} = Cogen I(\mathcal{F}).$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Left Supported Algebras: Left and Right Parts (1)

Given $X, Y \in \text{ind } \Lambda$, we denote $X \rightsquigarrow Y$ in case there exists a chain of nonzero nonisomorphisms

$$X = X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots X_{t-1} \xrightarrow{f_t} X_t = Y$$

with $t \ge 0$, between indecomposable modules. In this case we say *X* is a predecessor of *Y* and *Y* is a successor of *X*. If Y = X, we say *X* lies on a cycle. We now recall the definition of the left and right part of a module category.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Left Supported Algebras: Left and Right Parts (2)

We denote by \mathcal{L}_{Λ} and \mathcal{R}_{Λ} the following subcategories of ind Λ :

$$\mathcal{L}_{\Lambda} = \{ Y \in \text{ind } \Lambda : \text{pd}_{\Lambda} X \leq 1 \text{ for each } X \rightsquigarrow Y \}.$$

$$\mathcal{R}_{\Lambda} = \{ Y \in \text{ind } \Lambda : \text{id}_{\Lambda} X \leq 1 \text{ for each } Y \rightsquigarrow X \}$$

We call \mathcal{L}_{Λ} the *left part* of the module category mod Λ and \mathcal{R}_{Λ} the *right part*. It is easy to see that \mathcal{L}_{Λ} is closed under predecessors while \mathcal{R}_{Λ} is closed under successors.

(本間) (本語) (本語) (王語)

Left Supported Algebras: Definition

An algebra Λ is called *left supported* provided the class add \mathcal{L}_{Λ} is contravariantly finite in mod Λ . We define dually *right supported algebras*.

ヘロン 人間 とくほ とくほ とう

3

Left Supported Algebras: Characterizations

Let *E* be the direct sum of a complete set of representatives of the isomorphism classes of indecomposable Ext-injectives in add \mathcal{L}_{Λ} . Let *F* be the direct sum of a complete set of representatives of the isomorphism classes of indecomposable projectives not lying in \mathcal{L}_{Λ} .

Theorem 3.

[5, Theorem A] Let \land be an algebra. The following are equivalent:

- (a) Λ is left supported.
- (b) add $\mathcal{L}_{\Lambda} = CogenE$.
- (c) $T = E \oplus F$ is a tilting module.

ヘロト ヘアト ヘビト ヘビト

Left Supported Algebras: Components (1)

We need a result on the structure of the Auslander-Reiten components of a left supported algebra Λ . We recall a connected component Γ of $\Gamma(\text{mod }\Lambda)$ is called a *postprojective component* if Γ does not contain an oriented cycle and each indecomposable module $X \in \Gamma$ is of the form $\tau^{-r}P$ for some $r \in \mathbb{N}$ and an indecomposable projective Λ -module P.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Left Supported Algebras: Components (2)

Proposition 4.

[5, Corollary 5.4.] Let Λ be a representation-infinite left supported algebra. Then the following are equivalent:

- (a) \mathcal{L}_{Λ} is infinte.
- (b) There exists a component Γ of Γ(mod Λ) lying entirely in L_Λ.
- (c) Γ(mod Λ) has a postprojective component without injectives.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Main Result

We are now ready to prove our main theorem.

Theorem 5.

Let Λ be an algebra such that \mathcal{L}_{Λ} or $\mathcal{R}_{\Lambda} \neq \emptyset$. Then Λ is τ -tilting finite if and only if Λ is representation-finite.

ヘロト ヘアト ヘビト ヘビト

Proof Outline I

- The sufficiency is obvious so we prove the necessity.
- Assume Λ is τ -tilting finite but representation-infinite.
- Without loss of generality, assume $\mathcal{L}_{\Lambda} \neq \emptyset$.
- Every torsion-free class is functorially finite.
- (ind Λ \ add L_Λ, add L_Λ) is a torsion pair with add L_Λ a torsion-free class.
- By Proposition 2 (d), add $\mathcal{L}_{\Lambda} = \text{Cogen } I(\text{add } \mathcal{L}_{\Lambda})$
- Theorem 3 (b) guarantees Λ is left supported.
- The equivalency of Proposition 4 (a) and (c) guarantees the existence of a postprojective component Γ of Γ(mod Λ) with or without injectives.

(ロ) (同) (三) (三) (三) (○)

Proof Outline II

- Since a postprojective component is acyclic, Hom_Λ(*M*, τ*M*) = 0 for every indecomposable module *M* ∈ Γ.
- Since Γ is infinite, we have an infinite number of τ-rigid modules which further implies an infinite number of basic τ-tilting modules.
- This is a contradiction to Λ being τ -tilting finite!

◆ロ▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Applications I

We recall an algebra Λ is *laura* if the set ind $\Lambda \setminus (\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda})$ is finite (see [4] and [12]).

Corollary 6.

Let Λ be a laura algebra. Then Λ is τ -tilting finite if and only if Λ is representation-finite.

Following [3], an algebra Λ is an *ada algebra* if $\Lambda \oplus D\Lambda \in add(\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda})$. In [2], an algebra Λ is *right ada* if $\Lambda \in add(\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda})$. Dually, Λ is *left ada* if $D\Lambda \in add(\mathcal{L}_{\Lambda} \cup \mathcal{R}_{\Lambda})$.

Corollary 7.

If Λ is an ada, right ada, or left ada algebra, then Λ is τ -tilting finite if and only if Λ is representation-finite.

イロト イポト イヨト イヨト

Applications II

The next result gives a necessary and sufficient condition for an indecomposable module *Y* to be in \mathcal{L}_{Λ} .

Theorem 8.

[6, Theorem 1.1] Let Λ be an algebra with $Y \in ind \Lambda$. Then $Y \in \mathcal{L}_{\Lambda}$ if and only if, for every $X \in ind \Lambda$ with projective dimension at least two, we have $Hom_{\Lambda}(X, Y) = 0$.

The following corollary of Theorem 5 is immediate.

Corollary 9.

Let Λ be an algebra and suppose there exists a simple projective (injective) Λ -module M. Then Λ is τ -tilting finite if and only if Λ is representation-finite.

ヘロア 人間 アメヨア 人口 ア

ъ

Applications III

Let Λ be an algebra. We say a Λ -module T is a *tilting module* if $pd_{\Lambda}T \leq 1$, $Ext^{1}_{\Lambda}(T, T) = 0$, and the number of non-isomorphic indecomposable summands of T equals the number of non-isomorphic simple Λ -modules. Recall that a tilting module T determines a torsion pair, $(\mathcal{T}(T), \mathcal{F}(T))$, in mod Λ where $\mathcal{T}(T)$ (or $\mathcal{F}(T)$) is the full subcategory of those modules M such that $Ext^{1}_{\Lambda}(T, M) = 0$ (or such that $Hom_{\Lambda}(T, M) = 0$), (see [7] for details). We say T is *separating* if the torsion pair $(\mathcal{T}(T), \mathcal{F}(T))$ is splitting.

Corollary 10.

Let Λ be an algebra and suppose there exists a non-projective tilting Λ -module T which is separating. Then Λ is τ -tilting finite if and only if Λ is representation-finite.

イロト イポト イヨト イヨト

э

Applications IIII

The proof outline is as follows:

- Since T is non-projective, $\mathcal{F}(T)$ is non-empty.
- Let $X \in \mathcal{F}(T)$ be indecomposable.
- Since $(\mathcal{T}(T), \mathcal{F}(T))$ is splitting, we know $\tau X \in \mathcal{F}(T)$.
- By the definition of *T*(*T*), each indecomposable injective Λ-module must belong to *T*(*T*).
- Hom_{Λ}(*I*, τX) = 0 for every indecomposable injective *I*.
- $pd_{\Lambda}X \leq 1$.
- Any module Y with $pd_{\Lambda} Y \ge 2$ must belong to $\mathcal{T}(T)$.
- Hom_{Λ}(*Y*, *X*) = 0 for *X* $\in \mathcal{F}(T)$.
- Theorem 8 implies $X \in \mathcal{L}_{\Lambda}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Applications IV

We recall that the so-called APR-tilting modules [8] provide a classic sample of separating tilting modules. Let *S* be a simple projective that is not injective, if it exists, and set $T = \tau^{-1} S \oplus P$ where *P* is the direct sum of all non-isomorphic indecomposable projective Λ -modules different from *S*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

References I

- T. Adachi, O. Iyama and I. Reiten, *τ*-tilting theory, *Compos.Math.* **150** (2014), No. 3, 415–452.
- [2] E. Alvares, I. Assem, D. Castonguay and R. Vargas, Right ada algebras, J. Algebra and its Applications 16 (2017), No. 11.
- [3] I. Assem, D. Castonguay, M. Lanzilotta and R. Vargas, Algebras determined by their supports, *J. Pure Applied Algebra* 216 (2012), No. 5, 1134–1145.
- [4] I. Assem and F. U. Coelho, Two-sided gluing of tilted algebras, *J. Algebra* **269** (2003), No. 2, 456–479.
- [5] I. Assem, F. U. Coelho and S. Trepode, The left and right parts of a module category, J. Algebra 281 (2004), No. 2, 518–534.

ヘロン 人間 とくほ とくほ とう

E DQC

References II

- [6] I. Assem, M. Lanzilotta, and M. Redondo, Laura skew group algebras, *Comm.Algebra* **35** (2007), 2241–2257.
- [7] I. Assem, D. Simson and A. Skowronski, *Elements of the Representation Theory of Associative Algebras, 1: Techniques of Representation Theory*, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.
- [8] M. Auslander, M.I. Platzeck, and I. Reiten, Coxeter functors without diagrams, *Trans. Amer. Math. Soc.* 250 (1979), 1–46
- [9] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), No. 2, 426–454.

ヘロト 人間 ト ヘヨト ヘヨト

æ

References III

[10] L. Demonet, O. Iyama, and G. Jasso, *τ*-tilting finite algebras, bricks, and *g*-vectors.
International Mathematics Research Notices 2019 (2019), No. 3, 852–892.

[11] M. Hoshino, Tilting modules and torsion theories, Bull. London Math. Soc. 14 (1982), No. 4, 334–336.

[12] I. Reiten and A. Skowronski, Generalized double tilted algebras, J. Math. Soc. Japan 56 (2004), No. 1, 269–288

[13] S. O. Smalø, Torsion theory and tilting modules, Bull. London Math. Soc. **16** (1984), 518–522.

イロト イ押ト イヨト イヨトー

E DQC