Leavitt path algebras, B_{∞} -algebras and Keller's conjecture for singular Hochschild cohomology

Xiao-Wu Chen, USTC

The FD Seminar, 2020.9.24

Overview

• Keller's conjecture links the singular Hochschild cohomology to the Hochschild cohomology of the dg singularity category, on the B_{∞} -level

Overview

- Keller's conjecture links the singular Hochschild cohomology to the Hochschild cohomology of the dg singularity category, on the B_{∞} -level
- Confirm Keller's conjecture for finite dimensional algebras with radical square zero, via Leavitt path algebras (which are usually infinite dimensional)

Overview

- Keller's conjecture links the singular Hochschild cohomology to the Hochschild cohomology of the dg singularity category, on the B_{∞} -level
- Confirm Keller's conjecture for finite dimensional algebras with radical square zero, via Leavitt path algebras (which are usually infinite dimensional)
- joint with Huanhuan Li (Anhui Univ.) and Zhengfang Wang (Univ. Stuttgart)

The content

- An introduction to the singularity category
- Singular Hochschild cohomology and Keller's conjecture
- The main results
- Main ingredients of the proof

The convention and notation

- We work over a fixed field k.
- A = a finite dimensional associative k-algebra with unit
- A-mod = the abelian category of finite dimensional left
 A-modules
- A-proj = the full subcategory of finite dimensional projective
 A-modules

The derived category

- $\mathbf{D}^b(A\text{-mod}) = \text{the bounded derived category of } A\text{-mod}$
- $K^b(A-proj)$ = the bounded homotopy category of A-proj
- View $\mathbf{K}^b(A\operatorname{-proj}) \subseteq \mathbf{D}^b(A\operatorname{-mod})$ a full triangulated subcategory

The derived category

- $\mathbf{D}^b(A\text{-mod})$ = the bounded derived category of A-mod
- $K^b(A-proj)$ = the bounded homotopy category of A-proj
- ullet View $old K^b(A ext{-proj})\subseteq old D^b(A ext{-mod})$ a full triangulated subcategory

Lemma

 $\mathbf{K}^b(A\operatorname{-proj}) = \mathbf{D}^b(A\operatorname{-mod})$ if and only if $\operatorname{gl.dim}(A) < \infty$.

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient category

$$\mathbf{D}_{\mathrm{sg}}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient category

$$\mathbf{D}_{\mathrm{sg}}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

• $\mathbf{D}_{\mathrm{sg}}(A)$ vanishes if and only if $\mathrm{gl.dim}(A) < \infty$

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient category

$$\mathbf{D}_{\mathrm{sg}}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

- $\mathbf{D}_{\mathrm{sg}}(A)$ vanishes if and only if $\mathrm{gl.dim}(A) < \infty$
- $oldsymbol{\mathsf{D}}_{\mathrm{sg}}(A)$ is a homological invariant for algebras with infinite global dimension

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient category

$$\mathbf{D}_{\mathrm{sg}}(A) = \mathbf{D}^b(A\operatorname{-mod})/\mathbf{K}^b(A\operatorname{-proj}).$$

- $\mathbf{D}_{\mathrm{sg}}(A)$ vanishes if and only if $\mathrm{gl.dim}(A) < \infty$
- $\mathbf{D}_{\mathrm{sg}}(A)$ is a homological invariant for algebras with infinite global dimension
- $oldsymbol{\mathsf{D}}_{\operatorname{sg}}(A)$ is invariant under derived equivalences

 in mathematical physics, singularity categories are viewed as the B-side in the homological mirror symmetry of LG models

- in mathematical physics, singularity categories are viewed as the B-side in the homological mirror symmetry of LG models
- in commutative algebra, it relates to matrix factorizations and classical singularities of equations

- in mathematical physics, singularity categories are viewed as the B-side in the homological mirror symmetry of LG models
- in commutative algebra, it relates to matrix factorizations and classical singularities of equations
- in noncommutative geometry, its graded version relates to the bounded derived category of sheaves over noncommutative projective schemes

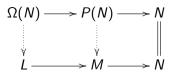
- in mathematical physics, singularity categories are viewed as the B-side in the homological mirror symmetry of LG models
- in commutative algebra, it relates to matrix factorizations and classical singularities of equations
- in noncommutative geometry, its graded version relates to the bounded derived category of sheaves over noncommutative projective schemes
- in homological algebra, it relates to Gorenstein projective modules, and Tate-Vogel cohomology
-

 The stable module category A-mod = A-mod/[A-proj]: killing morphisms factoring through projectives

- The stable module category A-mod = A-mod/[A-proj]: killing morphisms factoring through projectives
- ullet The stable module category A- $\operatorname{\underline{mod}}$ is left triangulated

- The stable module category A-mod = A-mod/[A-proj]: killing morphisms factoring through projectives
- ullet The stable module category A- $\operatorname{\underline{mod}}$ is left triangulated
- The syzygy functor $\Omega \colon A\operatorname{-}\mathrm{\underline{mod}} \longrightarrow A\operatorname{-}\mathrm{\underline{mod}}$ (usually not an equivalence!)

- The stable module category A-mod = A-mod/[A-proj]: killing morphisms factoring through projectives
- ullet The stable module category A- $\operatorname{\underline{mod}}$ is left triangulated
- The syzygy functor $\Omega \colon A\text{-}\underline{\mathrm{mod}} \longrightarrow A\text{-}\underline{\mathrm{mod}}$ (usually not an equivalence!)
- Short exact sequences induce exact triangles:



• The stablization $S(A-\underline{\mathrm{mod}})$ is obtained from $A-\underline{\mathrm{mod}}$ by formally inverting $\Omega!$

- The stablization $S(A-\underline{\mathrm{mod}})$ is obtained from $A-\underline{\mathrm{mod}}$ by formally inverting $\Omega!$
- More precisely, the objects are (M, n), with an A-module M and $n \in \mathbb{Z}$; the morphisms are given $\operatorname{Hom}((M, n), (L, m)) = \operatorname{colim} \operatorname{\underline{Hom}}_A(\Omega^{i-n}(M), \Omega^{i-m}(L))$

- The stablization $\mathcal{S}(A\operatorname{-}\mathrm{\underline{mod}})$ is obtained from $A\operatorname{-}\mathrm{\underline{mod}}$ by formally inverting $\Omega!$
- More precisely, the objects are (M, n), with an A-module M and $n \in \mathbb{Z}$; the morphisms are given $\operatorname{Hom}((M, n), (L, m)) = \operatorname{colim} \operatorname{\underline{Hom}}_A(\Omega^{i-n}(M), \Omega^{i-m}(L))$
- Ω now becomes $M = (M, 0) \mapsto (M, -1)$, an automorphism!

- The stablization $\mathcal{S}(A\operatorname{-}\mathrm{\underline{mod}})$ is obtained from $A\operatorname{-}\mathrm{\underline{mod}}$ by formally inverting $\Omega!$
- More precisely, the objects are (M, n), with an A-module M and $n \in \mathbb{Z}$; the morphisms are given $\operatorname{Hom}((M, n), (L, m)) = \operatorname{colim} \operatorname{\underline{Hom}}_A(\Omega^{i-n}(M), \Omega^{i-m}(L))$
- Ω now becomes $M = (M, 0) \mapsto (M, -1)$, an automorphism!
- The stabilization $\mathcal{S}(A\operatorname{-}\mathrm{\underline{mod}})$ is naturally triangulated.

Theorem (Keller-Vossieck 1987/Beligiannis 2000)

There is a triangle equivalence

$$\mathcal{S}(A\operatorname{-}\underline{\mathrm{mod}})\simeq \mathbf{D}_{\mathrm{sg}}(A).$$

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier quotient

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier quotient

for example, $\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod}) = \text{the bounded dg derived category}$: a dg category with $H^0(\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod})) = \mathbf{D}^b(A\operatorname{-mod})$

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier quotient

for example, $\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod})=$ the bounded dg derived category: a dg category with $H^0(\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod}))=\mathbf{D}^b(A\operatorname{-mod})$

Definition (Keller 2018)

The dg singularity category of A is given by the dg quotient

$$\mathbf{S}_{\mathrm{dg}}(A) = \mathbf{D}_{\mathrm{dg}}^{\mathit{b}}(A\operatorname{-mod})/\mathbf{C}_{\mathrm{dg}}^{\mathit{b}}(A\operatorname{-proj}).$$

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier quotient

for example, $\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod})=$ the bounded dg derived category: a dg category with $H^0(\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod}))=\mathbf{D}^b(A\operatorname{-mod})$

Definition (Keller 2018)

The *dg singularity category* of *A* is given by the dg quotient

$$\mathbf{S}_{\mathrm{dg}}(A) = \mathbf{D}_{\mathrm{dg}}^{b}(A\operatorname{-mod})/\mathbf{C}_{\mathrm{dg}}^{b}(A\operatorname{-proj}).$$

ullet $\mathbf{S}_{
m dg}(A)$ is a finer invariant as $H^0(\mathbf{S}_{
m dg}(A))=\mathbf{D}_{
m sg}(A)$

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier quotient

for example, $\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod}) = \text{the bounded dg derived category: a}$ dg category with $H^0(\mathbf{D}_{\mathrm{dg}}^b(A\operatorname{-mod})) = \mathbf{D}^b(A\operatorname{-mod})$

Definition (Keller 2018)

The dg singularity category of A is given by the dg quotient

$$\mathbf{S}_{\mathrm{dg}}(A) = \mathbf{D}_{\mathrm{dg}}^{b}(A\operatorname{-mod})/\mathbf{C}_{\mathrm{dg}}^{b}(A\operatorname{-proj}).$$

- ullet $\mathbf{S}_{\mathrm{dg}}(A)$ is a finer invariant as $H^0(\mathbf{S}_{\mathrm{dg}}(A)) = \mathbf{D}_{\mathrm{sg}}(A)$
- ullet There are various "realizations" of $oldsymbol{\mathsf{S}}_{\mathrm{dg}}(A)$; cf. [C-Li-Wang]

The content

- An introduction to the singularity category
- Singular Hochschild cohomology and Keller's conjecture
- The main results
- Main ingredients of the proof

• the enveloping algebra $A^e = A \otimes A^{op}$: A-A-bimodules = left A^e -modules

- the enveloping algebra $A^e = A \otimes A^{op}$: A-A-bimodules = left A^e -modules
- The Hochschild cohomology of A

$$\mathrm{HH}^*(A,A) = \mathrm{Hom}_{\mathbf{D}^b(A^{e}\text{-}\mathrm{mod})}(A,\Sigma^*(A))$$

- the enveloping algebra $A^e = A \otimes A^{op}$: A-A-bimodules = left A^e -modules
- The Hochschild cohomology of A

$$\mathrm{HH}^*(A,A) = \mathrm{Hom}_{\mathbf{D}^b(A^{e}\text{-}\mathrm{mod})}(A,\Sigma^*(A))$$

The singular Hochschild cohomology of A

$$\operatorname{HH}^*_{\operatorname{sg}}(A,A) = \operatorname{Hom}_{\boldsymbol{D}_{\operatorname{sg}}(A^e)}(A,\Sigma^*(A))$$

- the enveloping algebra $A^e = A \otimes A^{op}$: A-A-bimodules = left A^e -modules
- The Hochschild cohomology of A

$$\mathrm{HH}^*(A,A) = \mathrm{Hom}_{\mathbf{D}^b(A^e\operatorname{-mod})}(A,\Sigma^*(A))$$

The singular Hochschild cohomology of A

$$\operatorname{HH}^*_{\operatorname{sg}}(A,A) = \operatorname{Hom}_{\boldsymbol{D}_{\operatorname{sg}}(A^e)}(A,\Sigma^*(A))$$

Both are graded-commutative algebras

- the enveloping algebra $A^e = A \otimes A^{op}$: A-A-bimodules = left A^e -modules
- The Hochschild cohomology of A

$$\mathrm{HH}^*(A,A) = \mathrm{Hom}_{\mathbf{D}^b(A^{e}\text{-}\mathrm{mod})}(A,\Sigma^*(A))$$

The singular Hochschild cohomology of A

$$\operatorname{HH}^*_{\operatorname{sg}}(A,A) = \operatorname{Hom}_{\boldsymbol{D}_{\operatorname{sg}}(A^e)}(A,\Sigma^*(A))$$

- Both are graded-commutative algebras
- The Hochschild cohomology are well known to relate to deformation theory and noncommutative differential geometry...

Keller's theorem, the background

 HH* is defined naturally for any dg categories: the deformation theory of categories

Keller's theorem, the background

- HH* is defined naturally for any dg categories: the deformation theory of categories
- ullet Set ${f D}^b = {f D}^b_{
 m dg}(extit{A-mod})$ the bounded dg derived category

Keller's theorem, the background

- HH* is defined naturally for any dg categories: the deformation theory of categories
- ullet Set $\mathbf{D}^b = \mathbf{D}^b_{\mathrm{dg}}(A\operatorname{\mathsf{-mod}})$ the bounded dg derived category
- There is a canonical triangle embedding

$$\mathbf{D}^b(A^e\operatorname{-mod}) \hookrightarrow \mathbf{D}(\mathbf{D}^b), \quad X \mapsto \mathbb{R}\operatorname{Hom}_{\mathcal{A}}(-,X \otimes_{\mathcal{A}}^{\mathbb{L}} -)$$

inducing an isomorphism

$$\mathrm{HH}^*(A,A)\simeq\mathrm{HH}^*(\mathbf{D}^b,\mathbf{D}^b).$$

Keller's theorem, the background

- HH* is defined naturally for any dg categories: the deformation theory of categories
- ullet Set $\mathbf{D}^b = \mathbf{D}^b_{\mathrm{dg}}(A\operatorname{\mathsf{-mod}})$ the bounded dg derived category
- There is a canonical triangle embedding

$$\mathbf{D}^b(A^e\operatorname{-mod}) \hookrightarrow \mathbf{D}(\mathbf{D}^b), \quad X \mapsto \mathbb{R}\operatorname{Hom}_A(-,X \otimes_A^{\mathbb{L}} -)$$

inducing an isomorphism

$$\mathrm{HH}^*(A,A)\simeq \mathrm{HH}^*(\mathbf{D}^b,\mathbf{D}^b).$$

ullet Lowen-Van den Bergh 2005: this isomorphism lifts to B_{∞} -level

Theorem (Keller 2018)

Assume that $A/\operatorname{rad}(A)$ is separable over k. Then there is an canonical isomorphism of graded algebras

$$\Phi \colon \mathrm{HH}^*_{\mathrm{sg}}(A,A) \longrightarrow \mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A)).$$

Theorem (Keller 2018)

Assume that A/rad(A) is separable over k. Then there is an canonical isomorphism of graded algebras

$$\Phi \colon \mathrm{HH}^*_{\mathrm{sg}}(A,A) \longrightarrow \mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A)).$$

The isomorphism is induced by a triangle functor

$$\mathbf{D}_{\operatorname{sg}}(A^e) \longrightarrow \mathbf{D}(\mathbf{S}_{\operatorname{dg}}(A)).$$

Theorem (Keller 2018)

Assume that A/rad(A) is separable over k. Then there is an canonical isomorphism of graded algebras

$$\Phi \colon \mathrm{HH}^*_{\mathrm{sg}}(A,A) \longrightarrow \mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A)).$$

The isomorphism is induced by a triangle functor

$$\mathbf{D}_{\mathrm{sg}}(A^e) \longrightarrow \mathbf{D}(\mathbf{S}_{\mathrm{dg}}(A)).$$

• It is compatible with the previous isomorphism.

Theorem (Keller 2018)

Assume that A/rad(A) is separable over k. Then there is an canonical isomorphism of graded algebras

$$\Phi \colon \mathrm{HH}^*_{\mathrm{sg}}(A,A) \longrightarrow \mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A)).$$

• The isomorphism is induced by a triangle functor

$$\mathbf{D}_{\mathrm{sg}}(A^{e}) \longrightarrow \mathbf{D}(\mathbf{S}_{\mathrm{dg}}(A)).$$

- It is compatible with the previous isomorphism.
- It plays an essential role in Keller-Hua's work on Donovan-Wemyss's conjecture.

Kelle's conjecture

Conjecture (Keller 2018)

The isomorphism Φ lifts to B_{∞} -level, in particular, Φ preserves the Gerstenhaber structures.

Kelle's conjecture

Conjecture (Keller 2018)

The isomorphism Φ lifts to B_{∞} -level, in particular, Φ preserves the Gerstenhaber structures.

To be more precise,

• The Hochschild cochain complex $C^*(\mathbf{S}_{\mathrm{dg}}(A), \mathbf{S}_{\mathrm{dg}}(A))$, lifting $\mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A), \mathbf{S}_{\mathrm{dg}}(A))$, is a B_{∞} -algebra, with the cup product and brace operations

Kelle's conjecture

Conjecture (Keller 2018)

The isomorphism Φ lifts to B_{∞} -level, in particular, Φ preserves the Gerstenhaber structures.

To be more precise,

- The Hochschild cochain complex $C^*(\mathbf{S}_{\mathrm{dg}}(A), \mathbf{S}_{\mathrm{dg}}(A))$, lifting $\mathrm{HH}^*(\mathbf{S}_{\mathrm{dg}}(A), \mathbf{S}_{\mathrm{dg}}(A))$, is a B_{∞} -algebra, with the cup product and brace operations
- The singular Hochschild cochain complex $C_{sg}^*(A, A)$, lifting $HH_{sg}^*(A, A)$, is also a B_{∞} -algebra, with the cup product and brace operations [Wang 2018]

Following [Cuntz-Quillen 1995], in the bar resolution, we have

$$\Omega^p = (s\bar{A})^{\otimes p} \otimes A$$

the (graded) bimodule of noncommutative differential p-forms

• Following [Cuntz-Quillen 1995], in the bar resolution, we have

$$\Omega^p = (s\bar{A})^{\otimes p} \otimes A$$

the (graded) bimodule of noncommutative differential p-forms

Recall that the stabilization yields

$$\mathrm{HH}^*_{\mathrm{sg}}(A,A) = \mathrm{colim}\; \mathrm{HH}^*(A,\Omega^p)$$

Following [Cuntz-Quillen 1995], in the bar resolution, we have

$$\Omega^p = (s\bar{A})^{\otimes p} \otimes A$$

the (graded) bimodule of noncommutative differential p-forms

Recall that the stabilization yields

$$\mathrm{HH}^*_{\mathrm{sg}}(A,A) = \mathrm{colim}\; \mathrm{HH}^*(A,\Omega^p)$$

There are natural cochain maps

$$\theta_p \colon C^*(A, \Omega^p) \longrightarrow C^*(A, \Omega^{p+1}), \quad f \mapsto \mathrm{Id}_{s\bar{A}} \otimes f$$

between the Hochschild cochain complexes.

Following [Cuntz-Quillen 1995], in the bar resolution, we have

$$\Omega^p = (s\bar{A})^{\otimes p} \otimes A$$

the (graded) bimodule of noncommutative differential p-forms

Recall that the stabilization yields

$$\mathrm{HH}^*_{\mathrm{sg}}(A,A) = \mathrm{colim}\; \mathrm{HH}^*(A,\Omega^p)$$

There are natural cochain maps

$$\theta_p \colon C^*(A, \Omega^p) \longrightarrow C^*(A, \Omega^{p+1}), \quad f \mapsto \mathrm{Id}_{s\bar{A}} \otimes f$$

between the Hochschild cochain complexes. Therefore, taking the colimit, we obtain $C_{\rm sg}^*(A,A)$, called the *singular Hochschild cochain complex* of A; it computes ${\rm HH}_{\rm sg}^*(A,A)$.

Following [Cuntz-Quillen 1995], in the bar resolution, we have

$$\Omega^p = (s\bar{A})^{\otimes p} \otimes A$$

the (graded) bimodule of noncommutative differential p-forms

Recall that the stabilization yields

$$\mathrm{HH}^*_{\mathrm{sg}}(A,A) = \mathrm{colim}\; \mathrm{HH}^*(A,\Omega^p)$$

There are natural cochain maps

$$\theta_p \colon C^*(A, \Omega^p) \longrightarrow C^*(A, \Omega^{p+1}), \quad f \mapsto \mathrm{Id}_{s\bar{A}} \otimes f$$

between the Hochschild cochain complexes. Therefore, taking the colimit, we obtain $C_{\rm sg}^*(A,A)$, called the *singular Hochschild cochain complex* of A; it computes ${\rm HH}_{\rm sg}^*(A,A)$.

Wang's theorem

Theorem (Wang 2018)

There is a natural B_{∞} -algebra structure on $C_{sg}^*(A,A)$.

• It is compatible with the inclusion $C^*(A,A) \hookrightarrow C^*_{\operatorname{sg}}(A,A)$.

Wang's theorem

Theorem (Wang 2018)

There is a natural B_{∞} -algebra structure on $C_{sg}^*(A,A)$.

- It is compatible with the inclusion $C^*(A, A) \hookrightarrow C^*_{sg}(A, A)$.
- Two versions of $C_{\rm sg}^*(A,A)$, right and left; there is a nontrivial B_{∞} -duality between them.

1 The notion of a B_{∞} -algebra is due to [Getzler-Jones, 1994].

- **1** The notion of a B_{∞} -algebra is due to [Getzler-Jones, 1994].
- ② Roughly speaking, a B_{∞} -algebra B is a graded Poisson algebra up to homotopy; its cohomology $H^*(B)$ is a Gerstenhaber algebra.

- **1** The notion of a B_{∞} -algebra is due to [Getzler-Jones, 1994].
- ② Roughly speaking, a B_{∞} -algebra B is a graded Poisson algebra up to homotopy; its cohomology $H^*(B)$ is a Gerstenhaber algebra.
- **③** a B_{∞} -algebra is an A_{∞} -algebra with $\mu_{p,q}$: $B^{\otimes p} \otimes B^{\otimes q} \to B$ with $p,q \geq 0$.

- **1** The notion of a B_{∞} -algebra is due to [Getzler-Jones, 1994].
- ② Roughly speaking, a B_{∞} -algebra B is a graded Poisson algebra up to homotopy; its cohomology $H^*(B)$ is a Gerstenhaber algebra.
- ⓐ a B_{∞} -algebra is an A_{∞} -algebra with $\mu_{p,q}$: $B^{\otimes p} \otimes B^{\otimes q} \to B$ with $p,q \ge 0$.
- Our concern: $brace\ B_{\infty}$ -algebra, with dg algebra and $\mu_{p,q}=0$ for p>1;

- **1** The notion of a B_{∞} -algebra is due to [Getzler-Jones, 1994].
- ② Roughly speaking, a B_{∞} -algebra B is a graded Poisson algebra up to homotopy; its cohomology $H^*(B)$ is a Gerstenhaber algebra.
- **③** a B_{∞} -algebra is an A_{∞} -algebra with $\mu_{p,q}$: $B^{\otimes p} \otimes B^{\otimes q} \to B$ with $p,q \ge 0$.
- Our concern: $brace\ B_{\infty}$ -algebra, with dg algebra and $\mu_{p,q}=0$ for p>1; more precisely, a dg algebra with brace operations subject to the higher pre-Jacobi identity, the distributivity, and the higher homotopy.

• Two (brace) B_{∞} -algebras for A: the classical one $C^*(\mathbf{S}_{\operatorname{dg}}(A),\mathbf{S}_{\operatorname{dg}}(A))$, and the singular one $C^*_{\operatorname{sg}}(A,A)$

- Two (brace) B_{∞} -algebras for A: the classical one $C^*(\mathbf{S}_{\operatorname{dg}}(A),\mathbf{S}_{\operatorname{dg}}(A))$, and the singular one $C^*_{\operatorname{sg}}(A,A)$
- Keller's theorem says that they have the same cohomology

- Two (brace) B_{∞} -algebras for A: the classical one $C^*(\mathbf{S}_{\operatorname{dg}}(A),\mathbf{S}_{\operatorname{dg}}(A))$, and the singular one $C^*_{\operatorname{sg}}(A,A)$
- Keller's theorem says that they have the same cohomology

Conjecture (Keller 2018)

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A))\simeq C^*_{\mathrm{sg}}(A,A).$$

In particular, the isomorphism on the cohomology respects the Gerstenhaber structures.

- Two (brace) B_{∞} -algebras for A: the classical one $C^*(\mathbf{S}_{\operatorname{dg}}(A),\mathbf{S}_{\operatorname{dg}}(A))$, and the singular one $C^*_{\operatorname{sg}}(A,A)$
- Keller's theorem says that they have the same cohomology

Conjecture (Keller 2018)

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C^*(\mathbf{S}_{\mathrm{dg}}(A),\mathbf{S}_{\mathrm{dg}}(A))\simeq C^*_{\mathrm{sg}}(A,A).$$

In particular, the isomorphism on the cohomology respects the Gerstenhaber structures.

- The stronger version: the above isomorphism is required to be compatible with the canonical isomorphism Φ.
- We treat the above slightly weakened form.

The content

- An introduction to the singularity category
- Singular Hochschild cohomology and Keller's conjecture
- The main results
- Main ingredients of the proof

An invariance theorem

Theorem (C.-Li-Wang)

Keller's conjecture is invariant under one-point (co)extensions and singular equivalences with levels.

An invariance theorem

Theorem (C.-Li-Wang)

Keller's conjecture is invariant under one-point (co)extensions and singular equivalences with levels.

• We can remove the sinks and sources from the quiver of A.

An invariance theorem

$\mathsf{Theorem}\;(\mathsf{C}.\mathsf{-Li-Wang})$

Keller's conjecture is invariant under one-point (co)extensions and singular equivalences with levels.

- We can remove the sinks and sources from the quiver of A.
- Keller's conjecture is invariant under derived equivalences.

 It is well known that one-point (co)extensions and singular equivalences with level preserve singularity categories [C. 2011], [Wang 2015].

 It is well known that one-point (co)extensions and singular equivalences with level preserve singularity categories [C. 2011], [Wang 2015]. These equivalences lift to the dg singularity categories.

- It is well known that one-point (co)extensions and singular equivalences with level preserve singularity categories [C. 2011], [Wang 2015]. These equivalences lift to the dg singularity categories.
- For the invariance of $C_{\text{sg}}^*(A, A)$ under one-point (co)extension, one constructs explicit B_{∞} -quasi-isomorphisms;

- It is well known that one-point (co)extensions and singular equivalences with level preserve singularity categories [C. 2011], [Wang 2015]. These equivalences lift to the dg singularity categories.
- For the invariance of $C_{\rm sg}^*(A,A)$ under one-point (co)extension, one constructs explicit B_{∞} -quasi-isomorphisms; for the invariance of $C_{\rm sg}^*(A,A)$ under singular equivalences with level, one modifies an argument by [Keller 2003], using a triangular matrix algebra.

Keller's conjecture for algebras with radical square zero

- Q = a finite quiver without sinks
- $A_Q = kQ/J^2$ the algebra with radical square zero
- L(Q) = the Leavitt path algebra

Keller's conjecture for algebras with radical square zero

- Q = a finite quiver without sinks
- $A_Q = kQ/J^2$ the algebra with radical square zero
- L(Q) = the Leavitt path algebra

Theorem (C.-Li-Wang)

Then there are isomorphisms in the homotopy category of B_{∞} -algebras

$$C^*_{\operatorname{sg}}(A_Q, A_Q) \stackrel{\Upsilon}{\longrightarrow} C^*(L(Q), L(Q)) \stackrel{\Delta}{\longrightarrow} C^*(\mathbf{S}_{\operatorname{dg}}(A_Q), \mathbf{S}_{\operatorname{dg}}(A_Q)).$$

Keller's conjecture for algebras with radical square zero

- Q = a finite quiver without sinks
- $A_Q = kQ/J^2$ the algebra with radical square zero
- L(Q) = the Leavitt path algebra

Theorem (C.-Li-Wang)

Then there are isomorphisms in the homotopy category of B_{∞} -algebras

$$C^*_{\operatorname{sg}}(A_Q, A_Q) \stackrel{\Upsilon}{\longrightarrow} C^*(L(Q), L(Q)) \stackrel{\Delta}{\longrightarrow} C^*(\mathbf{S}_{\operatorname{dg}}(A_Q), \mathbf{S}_{\operatorname{dg}}(A_Q)).$$

• Keller's conjecture holds for any kQ/J^2 (iterated one-point coextensions), and also for gentle algebras (singular equivalence with level).

Keller's conjecture for algebras with radical square zero

- $extbf{Q} = extbf{a}$ finite quiver without sinks
- $A_Q = kQ/J^2$ the algebra with radical square zero
- L(Q) = the Leavitt path algebra

Theorem (C.-Li-Wang)

Then there are isomorphisms in the homotopy category of B_{∞} -algebras

$$C^*_{\operatorname{sg}}(A_Q, A_Q) \stackrel{\Upsilon}{\longrightarrow} C^*(L(Q), L(Q)) \stackrel{\Delta}{\longrightarrow} C^*(\mathbf{S}_{\operatorname{dg}}(A_Q), \mathbf{S}_{\operatorname{dg}}(A_Q)).$$

- Keller's conjecture holds for any kQ/J^2 (iterated one-point coextensions), and also for gentle algebras (singular equivalence with level).
- We use the Leavitt path algebra L(Q) as a bridge!

The content

- An introduction to the singularity category
- Singular Hochschild cohomology and Keller's conjecture
- The main results
- Main ingredients of the proof

To be explained

- What is Leavitt path algebra L(Q)?
- How does $A_Q = kQ/J^2$ relate to L(Q)?
- The categorical proof of

$$\Delta \colon C^*(L(Q),L(Q)) \to C^*(\mathbf{S}_{\mathrm{dg}}(A_Q),\mathbf{S}_{\mathrm{dg}}(A_Q))$$

The combinatorial proof of

$$\Upsilon \colon C^*_{\operatorname{sg}}(A_Q, A_Q) \to C^*(L(Q), L(Q))$$

Reminders on quivers

- $ullet Q=(Q_0,Q_1;s,t\colon Q_1 o Q_0)$ a finite quiver (= oriented graph)
- ullet $Q_0=$ the set of vertices, $Q_1=$ the set of arrows
- visualize an arrow α as $s(\alpha) \xrightarrow{\alpha} t(\alpha)$
- a vertex *i* is called a *sink*, if $s^{-1}(i) = \emptyset$;
- We assume that Q has no sinks.

Quick reminders on path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdot \cdot \cdot \xrightarrow{\alpha_n} \cdot$$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

- paths of length one = arrows; paths of length zero = vertices (for $i \in Q_0$, we associate a *trivial* path e_i .)
- The path algebra kQ: k-basis = paths in Q, the multiplication = concatenation of paths.

Quick reminders on path algebras

• a finite path in Q is $p = \alpha_n \cdots \alpha_2 \alpha_1$ of length n

$$\cdot \xrightarrow{\alpha_1} \cdot \xrightarrow{\alpha_2} \cdot \cdot \cdot \cdot \xrightarrow{\alpha_n} \cdot$$

In this case, we set $s(p) = s(\alpha_1)$ and $t(p) = t(\alpha_n)$.

- paths of length one = arrows; paths of length zero = vertices (for $i \in Q_0$, we associate a *trivial* path e_i .)
- The path algebra kQ: k-basis = paths in Q, the multiplication = concatenation of paths. More precisely, for two paths p and q in Q, p · q = pq if s(p) = t(q), otherwise, p · q = 0.
 For example, e_ie_j = δ_{i,j}e_i, e_ip = δ_{i,t(p)}p, pe_i = δ_{s(p),i}p.

Quick reminders on path algebras, continued

- Q_n = the set of paths in Q of length n; then $kQ = \bigoplus_{n \geq 0} kQ_n$ is naturally \mathbb{N} -graded.
- The unit $1_{kQ} = \sum_{i \in Q_0} e_i$ has a decomposition into pairwise orthogonal idempotents.
- Set $J = \bigoplus_{n \ge 1} kQ_n$, the two-sided ideal of kQ generated by arrows.
- The algebra $A_Q = kQ/J^2$ with radical square zero is finite dimensional. Indeed, A_Q has a basis $\{e_i \mid i \in Q_0\} \cup \{\alpha \mid \alpha \in Q_1\}$, the multiplication rule is given by $e_ie_j = \delta_{i,j}e_i$, $e_i\alpha = \delta_{i,t(\alpha)}\alpha$, $\beta e_j = \delta_{s(\beta),j}\beta$, $\alpha\beta = 0$.

 $\bar{Q}=$ the *double quiver* of Q, that is, for each arrow $\alpha\colon i\to j$ in Q, we add a new arrow $\alpha^*\colon j\to i$.

 $\bar{Q}=$ the *double quiver* of Q, that is, for each arrow $\alpha\colon i\to j$ in Q, we add a new arrow $\alpha^*\colon j\to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

 $\bar{Q}=$ the *double quiver* of Q, that is, for each arrow $\alpha\colon i\to j$ in Q, we add a new arrow $\alpha^*\colon j\to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

• (CK1) $\alpha \beta^* - \delta_{\alpha,\beta} e_{t(\alpha)}$, for all $\alpha, \beta \in Q_1$;

ar Q= the *double quiver* of Q, that is, for each arrow $\alpha\colon i\to j$ in Q, we add a new arrow $\alpha^*\colon j\to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

- (CK1) $\alpha \beta^* \delta_{\alpha,\beta} e_{t(\alpha)}$, for all $\alpha, \beta \in Q_1$;
- (CK2) $\sum_{\{\alpha \in Q_1 \mid s(\alpha)=i\}} \alpha^* \alpha e_i$, for all $i \in Q_0$.

ar Q= the *double quiver* of Q, that is, for each arrow $\alpha\colon i\to j$ in Q, we add a new arrow $\alpha^*\colon j\to i$.

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of $k\bar{Q}$ by the two-sided ideal generated by the following elements

- (CK1) $\alpha \beta^* \delta_{\alpha,\beta} e_{t(\alpha)}$, for all $\alpha, \beta \in Q_1$;
- (CK2) $\sum_{\{\alpha \in Q_1 \mid s(\alpha)=i\}} \alpha^* \alpha e_i$, for all $i \in Q_0$.

Here, CK stands for Cuntz-Krieger.

Example: The Leavitt algebra

Example

Let ${\cal Q}$ be the rose quiver with two petals. Then we have an isomorphism

$$L(Q) \simeq \frac{k\langle x_1, x_2, y_1, y_2\rangle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1\rangle}.$$

Example: The Leavitt algebra

Example

Let ${\cal Q}$ be the rose quiver with two petals. Then we have an isomorphism

$$L(Q) \simeq \frac{k\langle x_1, x_2, y_1, y_2\rangle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1\rangle}.$$

The latter algebra is called the Leavitt algebra L_2 of order two,

Example: The Leavitt algebra

Example

Let Q be the rose quiver with two petals. Then we have an isomorphism

$$L(Q) \simeq \frac{k\langle x_1, x_2, y_1, y_2\rangle}{\langle x_i y_j - \delta_{i,j}, y_1 x_1 + y_2 x_2 - 1\rangle}.$$

The latter algebra is called the *Leavitt algebra* L_2 of order two, studied by W. Leavitt in 1958, related to the non-IBN property.

• The Leavitt path algebra L(Q) is naturally \mathbb{Z} -graded as $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$.

- The Leavitt path algebra L(Q) is naturally \mathbb{Z} -graded as $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$.
- $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, that is, L(Q) is strongly graded.

- The Leavitt path algebra L(Q) is naturally \mathbb{Z} -graded as $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$.
- $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, that is, L(Q) is strongly graded.
- The zeroth component subalgebra $L(Q)_0$ is a direct limit of finite products of full matrix algebras; in particular, it is von Neumann regular.

- The Leavitt path algebra L(Q) is naturally \mathbb{Z} -graded as $L(Q) = \bigoplus_{n \in \mathbb{Z}} L(Q)_n$ with $e_i \in L(Q)_0$, $\alpha \in L(Q)_1$ and $\alpha^* \in L(Q)_{-1}$.
- $L(Q)_n \cdot L(Q)_m = L(Q)_{n+m}$, that is, L(Q) is strongly graded.
- The zeroth component subalgebra $L(Q)_0$ is a direct limit of finite products of full matrix algebras; in particular, it is von Neumann regular.
- The subalgebra $\bigoplus_{i \in Q_0} e_i L(Q)e_i$ is related to *parallel paths* in Q, and also to an explicit colimit (namely, $(p,q) \mapsto q^*p \in L(Q)$; very useful to us, later!).

Some consequences

Consider the category L(Q)-grproj of finitely generated \mathbb{Z} -graded projective L(Q)-modules.

Proposition

The category L(Q)-grproj is a semisimple abelian category.

Some consequences

Consider the category L(Q)-grproj of finitely generated \mathbb{Z} -graded projective L(Q)-modules.

Proposition

The category L(Q)-grproj is a semisimple abelian category.

The proof: strongly gradation implies that

$$L(Q)$$
-grproj $\simeq L(Q)_0$ -proj.

Now, use the von Neumann regularity of $L(Q)_0$.

• We will consider the degree-shift (1) on L(Q)-grproj.

Some consequences

Consider the category L(Q)-grproj of finitely generated \mathbb{Z} -graded projective L(Q)-modules.

Proposition

•

The category L(Q)-grproj is a semisimple abelian category.

The proof: strongly gradation implies that

$$L(Q)$$
-grproj $\simeq L(Q)_0$ -proj.

Now, use the von Neumann regularity of $L(Q)_0$.

• We will consider the degree-shift (1) on L(Q)-grproj.

$$(L(Q)e_i)(1)\simeq igoplus_{\{lpha\in Q_1\mid s(lpha)=i\}} L(Q)e_{t(lpha)}$$

How does A_Q relate to L(Q)?

Recall
$$A_Q = kQ/J^2$$
.

Theorem (Smith 2012)

There is an equivalence (of triangulated categories)

$$\mathbf{D}_{\mathrm{sg}}(A_Q) \simeq L(Q)$$
-grproj

sending the simple A_Q -module S_i to $L(Q)e_i$, with Σ^{-1} corresponding to (1).

How does A_Q relate to L(Q)?

Recall $A_Q = kQ/J^2$.

Theorem (Smith 2012)

There is an equivalence (of triangulated categories)

$$\mathbf{D}_{\mathrm{sg}}(A_Q) \simeq L(Q)$$
-grproj

sending the simple A_Q -module S_i to $L(Q)e_i$, with Σ^{-1} corresponding to (1).

The idea: the degree-shift functor (1) on L(Q)-grproj behaves similarly as the syzygy functor Ω on A_Q - $\underline{\mathrm{mod}}$. Now use stabilization as in [C. 2011].

The dg level contains more rigid information, for example, the Hochschild cohomology.

The dg level contains more rigid information, for example, the Hochschild cohomology. Enhancements:

$$\mathbf{D}_{\operatorname{sg}}(A_Q) \leadsto \mathbf{S}_{\operatorname{dg}}(A_Q)$$
 and $L(Q)$ -grproj $\leadsto \mathbf{per}_{\operatorname{dg}}(L(Q)^{\operatorname{op}})$

The dg level contains more rigid information, for example, the Hochschild cohomology. Enhancements:

$$\mathbf{D}_{\operatorname{sg}}(A_Q) \leadsto \mathbf{S}_{\operatorname{dg}}(A_Q)$$
 and $L(Q)$ -grproj $\leadsto \mathbf{per}_{\operatorname{dg}}(L(Q)^{\operatorname{op}})$

Proposition (C.-Li-Wang)

There is a zigzag of quasi-equivalences between

$$\mathsf{S}_{\mathrm{dg}}(A_Q) \simeq \mathsf{per}_{\mathrm{dg}}(L(Q)^{\mathrm{op}}).$$

Taking H^0 , we recover Smith's equivalence.

The dg level contains more rigid information, for example, the Hochschild cohomology. Enhancements:

$$\mathbf{D}_{\operatorname{sg}}(A_Q) \leadsto \mathbf{S}_{\operatorname{dg}}(A_Q)$$
 and $L(Q)$ -grproj $\leadsto \mathbf{per}_{\operatorname{dg}}(L(Q)^{\operatorname{op}})$

Proposition (C.-Li-Wang)

There is a zigzag of quasi-equivalences between

$$\mathsf{S}_{\mathrm{dg}}(A_Q) \simeq \mathsf{per}_{\mathrm{dg}}(L(Q)^{\mathrm{op}}).$$

Taking H^0 , we recover Smith's equivalence.

The idea: enhance a result of [Krause 2005] and use H. Li's injective Leavitt complex [Li 2018] (which gives an explicit compact generator to realize a triangle equivalence in [C.-Yang 2015]).

The categorical proof of Δ

Proposition

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C^*(L(Q), L(Q)) \stackrel{\Delta}{\longrightarrow} C^*(\mathbf{S}_{\mathrm{dg}}(A_Q), \mathbf{S}_{\mathrm{dg}}(A_Q)).$$

The categorical proof of Δ

Proposition

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C^*(L(Q), L(Q)) \stackrel{\Delta}{\longrightarrow} C^*(\mathbf{S}_{\mathrm{dg}}(A_Q), \mathbf{S}_{\mathrm{dg}}(A_Q)).$$

Recall the fact that $C^*(-,-)$ is invariant under Morita morphisms between dg categories [Keller 2003] (eg. quasi-equivalences or $L(Q) \hookrightarrow \mathbf{per}_{\mathrm{dg}}(L(Q)^{\mathrm{op}})$). Then use the above enhancement of Smith's equivalence.

We introduce two new and explicit B_{∞} -algebras:

We introduce two new and explicit B_{∞} -algebras:

(1) the combinatorial B_{∞} -algebra $C_{\rm sg}^*(Q,Q)$, via parallel paths in Q (appearing in the relative bar resolution!), and taking colimits (as in $C_{\rm sg}^*(A_Q,A_Q)$)

We introduce two new and explicit B_{∞} -algebras:

- (1) the combinatorial B_{∞} -algebra $C_{\rm sg}^*(Q,Q)$, via parallel paths in Q (appearing in the relative bar resolution!), and taking colimits (as in $C_{\rm sg}^*(A_Q,A_Q)$)
- (2) the Leavitt B_{∞} -algebra $\widehat{C}^*(L,L)$, whose algebra structure is a trivial extension of a subalgebra of L=L(Q)

$$\bigoplus_{i \in Q_0} e_i Le_i \oplus s^{-1} \bigoplus_{i \in Q_0} e_i Le_i$$

We introduce two new and explicit B_{∞} -algebras:

- (1) the combinatorial B_{∞} -algebra $C_{\rm sg}^*(Q,Q)$, via parallel paths in Q (appearing in the relative bar resolution!), and taking colimits (as in $C_{\rm sg}^*(A_Q,A_Q)$)
- (2) the Leavitt B_{∞} -algebra $\widehat{C}^*(L,L)$, whose algebra structure is a trivial extension of a subalgebra of L=L(Q)

$$\bigoplus_{i\in Q_0} e_i Le_i \oplus s^{-1} \bigoplus_{i\in Q_0} e_i Le_i$$

So, we have

$$C^*_{\operatorname{sg}}(A_Q,A_Q) \stackrel{\kappa}{\longrightarrow} C^*_{\operatorname{sg}}(Q,Q) \stackrel{\rho}{\longrightarrow} \widehat{C}^*(L,L)$$

strict B_{∞} -isomorphisms, where ρ sends a parallel path (p,q) to an element $q^*p \in L!$

Towards $\Upsilon : C_{sg}^*(A_Q, A_Q) \to C^*(L(Q), L(Q))$, continued

 an explicit bimodule projective resolution P of L = L(Q), together with a homotopy deformation retract (in particular, L is quasi-free in the sense of [Cuntz-Quillen 1995]);

Towards $\Upsilon: C^*_{so}(A_Q, A_Q) \to C^*(L(Q), L(Q))$, continued

- an explicit bimodule projective resolution P of L = L(Q), together with a homotopy deformation retract (in particular, L is quasi-free in the sense of [Cuntz-Quillen 1995]);
- moreover, we have $\widehat{C}^*(L,L) = \operatorname{Hom}_{L^e}(P,L)$.

Towards $\Upsilon : C_{sg}^*(A_Q, A_Q) \to C^*(L(Q), L(Q))$, continued

- an explicit bimodule projective resolution P of L = L(Q), together with a homotopy deformation retract (in particular, L is quasi-free in the sense of [Cuntz-Quillen 1995]);
- moreover, we have $\widehat{C}^*(L,L) = \operatorname{Hom}_{L^e}(P,L)$.
- ullet the homotopy transfer theorem for dg algebras yields an A_{∞} -quasi-isomorphism

$$(\Phi_1,\Phi_2,\cdots)\colon \widehat{C}^*(L,L)\longrightarrow C^*(L,L)$$

- an explicit bimodule projective resolution P of L = L(Q), together with a homotopy deformation retract (in particular, L is quasi-free in the sense of [Cuntz-Quillen 1995]);
- moreover, we have $\widehat{C}^*(L,L) = \operatorname{Hom}_{L^e}(P,L)$.
- ullet the homotopy transfer theorem for dg algebras yields an $A_{\infty}\text{-quasi-isomorphism}$

$$(\Phi_1,\Phi_2,\cdots)\colon \widehat{C}^*(L,L)\longrightarrow C^*(L,L)$$

• each Φ_i is explicit; by manipulation on brace B_{∞} -algebras, we eventually verify that it is a B_{∞} -morphism.

The combinatorial proof of Υ

In summary, we have

Proposition

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C_{\mathrm{sg}}^*(A_Q, A_Q) \stackrel{\Upsilon}{\longrightarrow} C^*(L(Q), L(Q)).$$

The combinatorial proof of Υ

In summary, we have

Proposition

There is an isomorphism in the homotopy category of B_{∞} -algebras

$$C_{\mathrm{sg}}^*(A_Q, A_Q) \stackrel{\Upsilon}{\longrightarrow} C^*(L(Q), L(Q)).$$

It is given by the following composition:

$$C_{\operatorname{sg}}^*(A_Q, A_Q) \xrightarrow{\Upsilon} C^*(L, L)$$

$$\downarrow \qquad \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

- G. ABRAMS, AND G. ARANDA PINO, The Leavitt path algebra of a graph, J. Algebra 293 (2) (2005), 319–334.
- P. Ara, M.A. Moreno, and E. Pardo, *Nonstable K-theory for graph algebras*, Algebr. Represent. Theory **10** (2) (2007), 157–178.
- R.O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, unpublished manuscript, 1987.
- X.W. CHEN, The singularity category of an algebra with radical square zero, Doc. Math. **16** (2011), 921–936.
- \blacksquare X.W. Chen, H. Li, and Z. Wang, Leavitt path algebras, B_{∞} -algebras and Keller's conjecture for singular Hochschild cohomology, arXiv:2007.06895v1, 2020.

- X.W. CHEN, AND D. YANG, Homotopy categories, Leavitt path algebras and Gorenstein projective modules, Int. Math. Res. Not. IMRN **10** (2015), 2597–2633.
- J. CUNTZ, AND D. QUILLEN, Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (2) (1995), 251–289.
- E. GETZLER, AND J.D.S. JONES, *Operads, homotopy algebra and iterated integrals for double loop spaces*, arXiv:hep-th/9403055, 1994.
- B. Keller, *Derived invariance of higher structures on the Hochschild complex*, preprint, 2003, available at https://webusers.imj-prg.fr/bernhard.keller/publ/index.html.

- B. Keller, Singular Hochschild cohomology via the singularity category, C. R. Math. Acad. Sci. Paris **356** (11-12) (2018), 1106–1111. Corrections, C. R. Math. Acad. Sci. Paris **357** (6) (2019), 533–536. See also arXiv:1809.05121v9, 2020.
- H. KRAUSE, *The stable derived category of a noetherian scheme*, Compositio Math. **141** (2005), 1128–1162.
- H. LI, *The injective Leavitt complex*, Algebr. Represent. Theor. 21 (2018), 833-858.
- W. LOWEN, AND M. VAN DEN BERGH, Hochschild cohomology of abelian categories and ringed spaces, Adv. Math. 198 (1) (2005), 172–221.
- D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Trudy Steklov Math. Institute **204** (2004), 240–262.

- S.P. SMITH, Equivalence of categories involving graded modules over path algebras of quivers, Adv. Math. 230 (2012), 1780–1810.
- Z. WANG, Gerstenhaber algebra and Deligne's conjecture on Tate-Hochschild cohomology, arXiv:1801.07990v1, Trans. Amer. Math. Soc., to appear, 2020.

Thank You!

http://home.ustc.edu.cn/~xwchen