Grassmanian Categories of Infinite Rank

Jenny August

MPIM

Joint work with Man-Wai Cheung, Eleonore Faber, Sira Gratz and Sibylle Schroll.

A (1) > A (2) > A

Grassmanian Cluster Algebras

Fix 0 < k < n. Then Gr(k, n) = space of k-dimensional subspaces of \mathbb{C}^n .

It is a projective variety by the Plücker embedding, so we may consider its homogeneous coordinate ring $\mathcal{A}_{k,n} = \mathbb{C}[\operatorname{Gr}(k,n)]$.

Theorem (Scott 2006)

 $\mathcal{A}_{k,n}$ has the structure of a cluster algebra.

$$\mathcal{A}_{k,n} \cong \mathbb{C}[p_I \mid I \subset \{1, \dots, n\}, |I| = k]/\mathcal{I}_P$$

where the p_l are called the Plücker coordinates and \mathcal{I}_P is generated by the Plücker relations.

The Plücker coordinates are examples of cluster variables in $A_{k,n}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, ..., n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_1, i_2 \in I \setminus J$ and $j_1, j_2 \in J \setminus I$ such that

 $i_1 < j_1 < i_2 < j_2$ or $j_1 < i_1 < j_2 < i_2$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, ..., n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_1, i_2 \in I \setminus J$ and $j_1, j_2 \in J \setminus I$ such that

$$i_1 < j_1 < i_2 < j_2$$
 or $j_1 < i_1 < j_2 < i_2$.

Terminology comes from k = 2:

- 2-subsets may be viewed as arcs in an n-gon;
- For example, n = 5 and $\{2, 5\}$ and $\{1, 4\}$;
- Here, 'crossing' as defined above corresponds to the arcs actually crossing.

< (日) × (日) × (4)

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, ..., n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_1, i_2 \in I \setminus J$ and $j_1, j_2 \in J \setminus I$ such that

$$i_1 < j_1 < i_2 < j_2$$
 or $j_1 < i_1 < j_2 < i_2$.

Terminology comes from k = 2:

- 2-subsets may be viewed as arcs in an *n*-gon;
- For example, n = 5 and $\{2, 5\}$ and $\{1, 4\}$;
- Here, 'crossing' as defined above corresponds to the arcs actually crossing.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Two Plücker coordinates p_I and p_J of $\mathcal{A}_{k,n}$ are *compatible* if I and J are noncrossing.

Cluster Structure on $\mathcal{A}_{k,n}$

Theorem (Scott 2006)

 $\mathcal{A}_{k,n}$ has the structure of a cluster algebra.

$$\mathcal{A}_{k,n} \cong \mathbb{C}[p_I \mid I \subset \{1,\ldots,n\}, |I| = k]/\mathcal{I}_P$$

- Plücker coordinates are examples of cluster variables;
- Maximal sets of compatible Plücker coordinates give examples of clusters;
- If k = 2, all cluster variables and clusters arise in this way.

Basic Idea: Find an additive category such that:

- indecomposables objects $\leftrightarrow \rightarrow$ cluster variables in $\mathcal{A}_{k,n}$;
- cluster-tilting subcategories \iff clusters in $\mathcal{A}_{k,n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic Idea: Find an additive category such that:

- indecomposables objects $\leftrightarrow \rightarrow$ cluster variables in $\mathcal{A}_{k,n}$;
- cluster-tilting subcategories $\leftrightarrow \rightarrow$ clusters in $\mathcal{A}_{k,n}$.

The Grassmanian cluster algebra was first categorified by Geiß, Leclerc and Schröer, but Jensen, King and Su had a different approach using singularities:

- Set $R_{k,n} = \mathbb{C}[x, y]/(x^k y^{n-k})$ which is an isolated curve singularity;
- The group $\mu_n = \{\zeta \in \mathbb{C} \mid \zeta^n = 1\}$ acts on $R_{k,n}$ via

$$\zeta \cdot x = \zeta x, \quad \zeta \cdot y = \zeta^{-1} y;$$

 Consider MCM^{μ_n} R_{k,n} = the category of μ_n-equivariant maximal Cohen-Macaulay R_{k,n}-modules.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Theorem (Jensen, King and Su 2016)

There is a bijection

{rank one modules in $MCM^{\mu_n}R_{k,n}$ } \leftrightarrow {*Plücker coordinates in* $\mathcal{A}_{k,n}$ }.

So For two rank one modules M and N, $Ext^1(M, N) = 0$ if and only if the corresponding Plücker coordinates are compatible.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (Jensen, King and Su 2016)

There is a bijection

{rank one modules in $MCM^{\mu_n}R_{k,n}$ } \leftrightarrow {*Plücker coordinates in* $\mathcal{A}_{k,n}$ }.

So For two rank one modules M and N, $Ext^1(M, N) = 0$ if and only if the corresponding Plücker coordinates are compatible.

Moreover, by showing a relationship between $MCM^{\mu_n}R_{k,n}$ and the categorification of Geiß, Leclerc and Schröer, they know:

- Cluster-tilting subcategories of MCM^{µn}R_{k,n} exist, and examples of such are given by maximal sets of compatible Plücker coordinates.
- There is a cluster character linking MCM^{µn}R_{k,n} with the cluster algebra A_{k,n}.

(日)

k = 2 or 'Type A'

When k = 2, $MCM^{\mu_n}R_{k,n}$ is of finite type i.e. there are finitely many indecomposable objects.

There are bijections between

• indecomposable objects in $MCM^{\mu_n}R_{2,n}$;

- 2 cluster variables in $\mathcal{A}_{2,n}$;
- arcs in an n-gon.

And further bijections between

- cluster-tilting subcategories in $MCM^{\mu_n}R_{2,n}$;
- 2 clusters in $\mathcal{A}_{2,n}$;
- triangulations of the n-gon.

・ 何 ト ・ ヨ ト ・ ヨ ト

Grassmanian Cluster Algebras of Infinite Rank

In 2015, Grabowski and Gratz introduced an infinite version of $A_{k,n}$:

$$\mathcal{A}_k := \mathbb{C}[p_I \mid I \subset \mathbb{Z}, |I| = k]/\mathcal{I}_P$$

where \mathcal{I}_{P} is generated by Plücker relations.

- They showed A_k can be endowed with the structure of a cluster algebra in infinitely many ways;
- Gratz also showed that A_k is the colimit of the cluster algebras A_{k,n} in the category of rooted cluster algebras;
- Groechenig further showed that A_k is isomorphic to the coordinate ring of an infinite rank Grassmanian.

ヘロト 人間 ト イヨト イヨト

Grassmanian Categories of Infinite Rank

Idea: Take $n \rightarrow \infty$ in the work of Jensen, King and Su:

• The singularity:

$$R_{k,n} = \mathbb{C}[x,y]/(x^k - y^{n-k}) \quad \rightsquigarrow \quad R_k = \mathbb{C}[x,y]/(x^k);$$

The group action:

$$\mu_n \curvearrowright R_{k,n} \quad \rightsquigarrow \quad \mathbb{G}_m = \mathbb{C}^* \curvearrowright R_k,$$
$$\zeta \cdot x = \zeta x,$$
$$\zeta \cdot y = \zeta^{-1} y;$$

• The category: $\mathrm{MCM}^{\mu_n} R_{k,n} \quad \rightsquigarrow \quad \mathrm{MCM}^{\mathbb{G}_m} R_k.$

イロト 不良 トイヨト イヨト

Grassmanian Categories of Infinite Rank

But as the character group of \mathbb{G}_m is $\mathbb{Z},$ there is an equivalence of categories

$$\mathrm{MCM}^{\mathbb{G}_m} R_k \simeq \mathrm{MCM}_{\mathbb{Z}} R_k$$

where the latter is the category of \mathbb{Z} -graded MCM R_k modules, with |x| = 1 and |y| = -1.

Definition

We call $MCM_{\mathbb{Z}}R_k$ the Grassmanian category of type (k, ∞) .

< 日 > < 同 > < 三 > < 三 > <

What do we know about this category?

- *R_k* is a non-isolated hypersurface singularity, and hence is Gorenstein and MCM_Z*R_k* is a Frobenius category.
- When k = 2, this is the curve singularity of type A_{∞} :
 - By Buchweitz-Greuel-Schreyer, we know all indecomposable objects:

$$egin{array}{lll} (x,y^i)(j) & ext{where} & i\geq 0, j\in \mathbb{Z} \ \mathbb{C}[y](\ell) & ext{where} & \ell\in \mathbb{Z} \end{array}$$

- Our category is related to others in the literature studying cluster combinatorics of type A_∞: Holm–Jørgensen, Paquette–Yildirum.
- However, when $k \geq 3$, $MCM_{\mathbb{Z}}R_k$ is wild.

・ロト ・四ト ・ヨト ・ヨト … ヨ

Generalising rank one modules

Recall that JKS gave a bijection

{rank one modules in $MCM^{\mu_n}R_{k,n}$ } \leftrightarrow {Plücker coordinates in $\mathcal{A}_{k,n}$ }.

We would like to replicate this, but as R_k is not reduced, we need to be more careful what we mean by "rank".

Definition

Let $\mathcal{F} = \mathbb{C}[x, y^{\pm}]/(x^k)$ be the total ring of fractions for R_k . Then we say $M \in \mathrm{MCM}_{\mathbb{Z}}R_k$ is generically free of rank n if $M \otimes_{R_k} \mathcal{F}$ is a free \mathcal{F} -module of rank n.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Classifying generically free modules

Proposition (ACFGS)

- If M ∈ MCM_ZR_k is generically free then M ≅ Ω(N) for some finite dimensional (over C) graded R_k-module N.
- ② $M \in MCM_{\mathbb{Z}}R_k$ is generically free of rank one $\iff M$ is isomorphic to a shift of a graded ideal of R_k which contains a power of *y*.
- Severy homogeneous ideal of R_k can be generated by monomials.

Corollary (ACFGS)

A module $M \in MCM_{\mathbb{Z}}R_k$ is generically free of rank one $\iff M$ is isomorphic to

$$(x^{k-1}, x^{k-2}y^{i_1}, x^{k-3}y^{i_2}, \dots, xy^{i_{k-2}}, y^{i_{k-1}})(i_k)$$

for some $0 \leq i_1 \leq i_2 \leq \cdots \leq i_{k-2} \leq i_{k-1}$ and $i_k \in \mathbb{Z}$.

Connection to Plücker coordinates

Consider k = 4 and $I = (x^3, x^2y^2, xy^2, y^4)(1)$ - how do we get a 4-subset?

\deg_I :	-5	-4	-3	-2	(-1)	0	1	2
	x ³ y ⁷	x ³ y ⁶	x ³ y ⁵	x^3y^4	x^3y^3	x^3y^2	x ³ y	<i>x</i> ³
	x^2y^6	$x^{2}y^{5}$	x^2y^4	x^2y^3	x^2y^2	x^2y	x^2	
	xy ⁵	xy ⁴	xy ³	xy ²	xy	X		
	<i>y</i> ⁴	у ³	y^2	У	1			

Look at where the rows end - $\ell(I) = (-5, -2, -1, 2)$

This equivalent to $\ell(I) = (\deg_I(y^4), \deg_I(xy^2), \deg_I(x^2y^2), \deg_I(x^3)).$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Set
$$\ell(I) = (\deg_I(y^{i_{k-1}}), \deg_I(xy^{i_{k-2}}), \dots, \deg_I(x^{k-2}y^{i-1}), \deg_I(x^{k-1})).$$

• This gives a strictly increasing k-subset;

- deg_I(x^{k-1}) = k − 1 − i_k, so we can immediately recover i_k (the shift of the ideal I) from the last term of ℓ(I);
- we may also recover each i_j from $\ell(I)_{k-j} = k j 1 i_j i_k$.

Theorem (ACFGS)

There is a bijection

$$\begin{cases} \text{generically free modules of} \\ \text{rank one in } \operatorname{MCM}_{\mathbb{Z}}R_k \end{cases} \longleftrightarrow \begin{cases} \text{Plücker coordinates} \\ \text{in } \mathcal{A}_k \end{cases} \\ I & \mapsto & P_{\ell}(I). \end{cases}$$

Moreover, $\text{Ext}^1(I, J) = 0$ if and only if $p_{\ell(I)}$ and $p_{\ell(J)}$ are compatible (or equivalently $\ell(I)$ and $\ell(J)$ are noncrossing).

ヘロト 人間ト ヘヨト ヘヨト

Our combinatorial tool

Associated to two k-subsets $\ell = (\ell_1, \ldots, \ell_k)$ and $m = (m_1, \ldots, m_k)$, we get two staircase paths in a $(k \times k)$ grid:

- Both paths go from the top left to the bottom right;
- For path A (respectively path B), a box (i, j) lies above the path if and only if l_i ≤ m_j (respectively l_i < m_j).

 $m_1 < l_1 < l_2 = m_2 < m_2 < l_2 < m_4 < l_4$

Take k = 4 and consider the subsets ℓ and m with

- $A(\ell, m) = B(\ell, m);$
- we can describe the path by reading from smallest to largest:
 - each time you read an *m* go right;
 - each time you read an ℓ go down.

・ 何 ト ・ ヨ ト ・ ヨ ト

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an *m* go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

•
$$A(\ell, m) = B(\ell, m);$$

• we can describe the path by reading from smallest to largest:

- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$.

- $A(\ell, m) = B(\ell, m);$
- we can describe the path by reading from smallest to largest:
 - each time you read an *m* go right;
 - each time you read an ℓ go down.
- We can also read the number of 'crossings' between ℓ and m using the number of steps.
- In particular, ℓ and m are noncrossing if and only if the staircase path has a single step:

From these staircases, we extract two numbers:

Definition

Let $\alpha(\ell, m)$ be the number of upper diagonals that lie completely above the staircase path in $A(\ell, m)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Similarly:

Definition

Let $\beta(\ell, m)$ be the number of lower diagonals that lie completely below the staircase path in $B(\ell, m)$.

< (日) × (日) × (4)

Theorem (ACFGS)

If ℓ and m are two k-subsets, then ℓ and m are noncrossing if and only if

$$\alpha(\ell, m) + \beta(\ell, m) - |\ell \cap m| = k.$$

Easy to show when ℓ and m are disjoint (using the single step pictures) - then use induction by removing the common terms, and showing how α and β change.

Example: For $m_1 < \ell_1 < \ell_2 = m_2 < m_3 < \ell_3 < m_4 < \ell_4$, we have

$$\alpha(\ell,m)+\beta(\ell,m)-|\ell\cap m|=3+4-1=6\neq 4,$$

and we see that there is a crossing $m_1 < \ell_1 < m_3 < \ell_3$.

Connection to Ext dimension

Take two generically free modules of rank one in $MCM_{\mathbb{Z}}R_k$, say I and J. Then to calculate $Ext^1(I, J)$, use the matrix factorisation of I

$$R_k^k \xrightarrow{M} R_k^k \xrightarrow{N} R_k^k \to I \to 0$$

to give a graded projective presentation of *I*. Apply $\operatorname{grHom}(-, J)$, noting that $\operatorname{grHom}(R_k(m), J) \cong J(-m)$ to get

$$\mathbb{J} \xrightarrow{N^T} \mathbb{J}(1) \xrightarrow{M^T} \mathbb{J}(k)$$

where each \mathbb{J} is a direct sum of k appropriately shifted copies of J. Then

$$\mathsf{Ext}^1(I,J) = (\mathsf{ker}(M^T))_0 / (\mathrm{im}(N^T))_0.$$

Then, simply using rank-nullity we may show

$$dim_{\mathbb{C}}(\mathsf{Ext}^{1}(I,J)) = dim_{\mathbb{C}}((\ker(M^{T}))_{0}) - \dim_{\mathbb{C}}((\operatorname{im}(N^{T}))_{0})$$
$$= \left(dim_{\mathbb{C}}(\mathbb{J}(1)_{0}) - \dim_{\mathbb{C}}(\operatorname{im}(M^{T}))_{0})\right)$$
$$- \left(dim_{\mathbb{C}}(\mathbb{J}_{0}) - \dim_{\mathbb{C}}(\ker(N^{T}))_{0})\right)$$

Then, simple calculations using the matrices M and N shows

$$\begin{aligned} \dim_{\mathbb{C}}(\mathbb{J}_0) - \dim_{\mathbb{C}}(\mathbb{J}(1)_0) &= |\ell(I) \cap \ell(J)| \\ \dim_{\mathbb{C}}(\operatorname{im}(M^{\mathsf{T}}))_0) &= k - \beta(\ell(I), \ell(J)) \\ \dim_{\mathbb{C}}(\ker(N^{\mathsf{T}}))_0) &= \alpha(\ell(I), \ell(J)) \end{aligned}$$

Theorem (ACFGS)

 $\dim_{\mathbb{C}}(\mathsf{Ext}^{1}(I,J)) = \alpha(\ell(I),\ell(J)) + \beta(\ell(I),\ell(J)) - k - |\ell(I) \cap \ell(J)|.$

イロト イボト イヨト イヨト

Theorem (ACFGS)

If ℓ and m are two k-subsets, then ℓ and m are noncrossing if and only if

 $\alpha(\ell, m) + \beta(\ell, m) - |\ell \cap m| = k.$

Theorem (ACFGS)

 $\dim_{\mathbb{C}}(\operatorname{Ext}^{1}(I,J)) = \alpha(\ell(I),\ell(J)) + \beta(\ell(I),\ell(J)) - k - |\ell(I) \cap \ell(J)|.$

Corollary (ACFGS)

If I and J are two generically free modules of rank 1 in $MCM_{\mathbb{Z}}R_k$ then $Ext^1(I, J) = 0$ if and only if $\ell(I)$ and $\ell(J)$ are noncrossing.

イロト 不得下 イヨト イヨト

k = 2 case

Recall that when k = 2, all indecomposable objects are of the form:

$$egin{array}{lll} (x,y^i)(j) & ext{where} & i\geq 0, j\in \mathbb{Z} \ \mathbb{C}[y](\ell) & ext{where} & \ell\in \mathbb{Z}. \end{array}$$

э

イロト イボト イヨト イヨト

k = 2 case

Recall that when k = 2, all indecomposable objects are of the form:

$$egin{array}{lll} (x,y^i)(j) & ext{where} & i\geq 0, j\in \mathbb{Z} \ \mathbb{C}[y](\ell) & ext{where} & \ell\in \mathbb{Z}. \end{array}$$

The $(x, y^i)(j)$ are the generically free modules, which are all of rank 1. They can be classified by arcs in an ∞ -gon:

$$(x, y^i)(j) \rightarrow (-i-j, 1-j) \rightarrow$$

(4) (日本)

$$k = 2$$
 case

Recall that when k = 2, all indecomposable objects are of the form:

$$egin{array}{lll} (x,y^i)(j) & ext{where} & i\geq 0, j\in \mathbb{Z} \ \mathbb{C}[y](\ell) & ext{where} & \ell\in \mathbb{Z}. \end{array}$$

The $(x, y^i)(j)$ are the generically free modules, which are all of rank 1. They can be classified by arcs in an ∞ -gon:

$$(x,y^i)(j) \rightarrow (-i-j,1-j) \rightarrow$$

Sets of noncrossing arcs correspond to rigid subcategories of $MCM_{\mathbb{Z}}R_2$.

 \sim

A B A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

Holm and Jørgensen cluster combinatorics of A_∞

These are the same combinatorics studied by Holm and Jørgensen. They consider the category

 $D^f_{dg}(\mathbb{C}[y])$

i.e. the derived category of dg modules with finite dimensional homology over the dga $\mathbb{C}[y]$ with zero differential.

indecomposable objects \longleftrightarrow arcs in an ∞ -gon maximal rigid subcategories \longleftrightarrow triangulations in an ∞ -gon

Let ${\mathcal C}$ be the full subcategory of ${\rm MCM}_{\mathbb Z} R_2$ generated by generically free modules. Then

$$\underline{\mathcal{C}} \simeq D^f_{dg}(\mathbb{C}[y]).$$

・ロト ・四ト ・ヨト ・ヨト … ヨ

Holm and Jørgensen cluster combinatorics of A_∞

Since $\underline{C} \simeq D_{dg}^{f}(\mathbb{C}[y])$, the cluster-tilting subcategories in both are the same and by Holm–Jørgensen, these correspond to triangulations of the ∞ -gon containing either:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What about the other modules?

We can also include the modules $\mathbb{C}[y](\ell)$ in the combinatorial model by completing the ∞ -gon i.e. adding a point at $-\infty$.

$$\mathbb{C}[y](\ell) \leftrightarrow (-\infty, -\ell)$$

- If (a, b) is a finite arc and (-∞, -ℓ) is an infinite arc, then Ext¹ vanishes between the corresponding modules if and only if the arcs are noncrossing.

$$\operatorname{Ext}^1(\mathbb{C}[y],\mathbb{C}[y](\ell)) = egin{cases} \mathbb{C} & ext{ if } \ell < 0, \\ 0 & ext{ otherwise.} \end{cases}$$

 So maximal rigid subcategories in MCM_ℤR₂ are maximal sets of noncrossing arcs with at most one infinite arc.

- 4 回 ト - 4 回 ト

Cluster-tilting subcategories

Theorem (ACFGS)

The cluster-tilting subcategories of $MCM_{\mathbb{Z}}R_2$ correspond precisely to maximal sets of noncrossing arcs in the completed ∞ -gon, which contain a fountain.

Using this combinatorial model, we are able to see connections to other work in the literature.

Proposition (ACFGS)

 $MCM_{\mathbb{Z}}R_2$ is equivalent to the completed discrete cluster category of infinite type corresponding to a disk with a single accumulation point, as studied by Paquette–Yildirum.

Thank you!

Jenny August (MPIM)

Grassmanian Categories of Infinite Rank

29 / 29

2

イロト イヨト イヨト イヨト