Grassmanian Categories of Infinite Rank

Jenny August

MPIM

Joint work with Man-Wai Cheung, Eleonore Faber, Sira Gratz and Sibylle Schroll.

Grassmanian Cluster Algebras

Fix $0<k<n$. Then $\operatorname{Gr}(k, n)=$ space of k-dimensional subspaces of \mathbb{C}^{n}.
It is a projective variety by the Plücker embedding, so we may consider its homogeneous coordinate ring $\mathcal{A}_{k, n}=\mathbb{C}[\operatorname{Gr}(k, n)]$.

Theorem (Scott 2006)
$\mathcal{A}_{k, n}$ has the structure of a cluster algebra.

$$
\mathcal{A}_{k, n} \cong \mathbb{C}\left[p_{I}|I \subset\{1, \ldots, n\},|I|=k] / \mathcal{I}_{P}\right.
$$

where the p_{I} are called the Plücker coordinates and \mathcal{I}_{P} is generated by the Plücker relations.

The Plücker coordinates are examples of cluster variables in $\mathcal{A}_{k, n}$.

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, \ldots, n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_{1}, i_{2} \in I \backslash J$ and $j_{1}, j_{2} \in J \backslash I$ such that

$$
i_{1}<j_{1}<i_{2}<j_{2} \quad \text { or } \quad j_{1}<i_{1}<j_{2}<i_{2} .
$$

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, \ldots, n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_{1}, i_{2} \in I \backslash J$ and $j_{1}, j_{2} \in J \backslash I$ such that

$$
i_{1}<j_{1}<i_{2}<j_{2} \quad \text { or } \quad j_{1}<i_{1}<j_{2}<i_{2} .
$$

Terminology comes from $k=2$:

- 2-subsets may be viewed as arcs in an n-gon;
- For example, $n=5$ and $\{2,5\}$ and $\{1,4\}$;
- Here, 'crossing' as defined above corresponds to the arcs actually crossing.

Compatibility of Plücker coordinates

Definition

Two k-subsets I and J of $\{1, \ldots, n\}$ (or more generally \mathbb{Z}) are said to be crossing if there exist $i_{1}, i_{2} \in I \backslash J$ and $j_{1}, j_{2} \in J \backslash I$ such that

$$
i_{1}<j_{1}<i_{2}<j_{2} \quad \text { or } \quad j_{1}<i_{1}<j_{2}<i_{2} .
$$

Terminology comes from $k=2$:

- 2-subsets may be viewed as arcs in an n-gon;
- For example, $n=5$ and $\{2,5\}$ and $\{1,4\}$;
- Here, 'crossing' as defined above corresponds to the arcs actually crossing.

Two Plücker coordinates p_{I} and p_{J} of $\mathcal{A}_{k, n}$ are compatible if I and J are noncrossing.

Cluster Structure on $\mathcal{A}_{k, n}$

Theorem (Scott 2006)
$\mathcal{A}_{k, n}$ has the structure of a cluster algebra.

$$
\mathcal{A}_{k, n} \cong \mathbb{C}\left[p_{I}|I \subset\{1, \ldots, n\},|I|=k] / \mathcal{I}_{P}\right.
$$

- Plücker coordinates are examples of cluster variables;
- Maximal sets of compatible Plücker coordinates give examples of clusters;
- If $k=2$, all cluster variables and clusters arise in this way.

Jensen, King and Su Categorification

Basic Idea: Find an additive category such that:

- indecomposables objects $\leadsto \nrightarrow$ cluster variables in $\mathcal{A}_{k, n}$;
- cluster-tilting subcategories \longleftrightarrow clusters in $\mathcal{A}_{k, n}$.

Jensen, King and Su Categorification

Basic Idea: Find an additive category such that:

- indecomposables objects $\leadsto \nrightarrow$ cluster variables in $\mathcal{A}_{k, n}$;
- cluster-tilting subcategories $\rightsquigarrow \gg$ clusters in $\mathcal{A}_{k, n}$.

The Grassmanian cluster algebra was first categorified by Geiß, Leclerc and Schröer, but Jensen, King and Su had a different approach using singularities:

- Set $R_{k, n}=\mathbb{C}[x, y] /\left(x^{k}-y^{n-k}\right)$ which is an isolated curve singularity;
- The group $\mu_{n}=\left\{\zeta \in \mathbb{C} \mid \zeta^{n}=1\right\}$ acts on $R_{k, n}$ via

$$
\zeta \cdot x=\zeta x, \quad \zeta \cdot y=\zeta^{-1} y
$$

- Consider $\mathrm{MCM}^{\mu_{n}} R_{k, n}=$ the category of μ_{n}-equivariant maximal Cohen-Macaulay $R_{k, n}$-modules.

Jensen, King and Su Categorification

Theorem (Jensen, King and Su 2016)
(1) There is a bijection
$\left\{\right.$ rank one modules in $\left.\mathrm{MCM}^{\mu_{n}} R_{k, n}\right\} \leftrightarrow\left\{\right.$ Plücker coordinates in $\left.\mathcal{A}_{k, n}\right\}$.
(2) For two rank one modules M and $N, \operatorname{Ext}^{1}(M, N)=0$ if and only if the corresponding Plücker coordinates are compatible.

Jensen, King and Su Categorification

Theorem (Jensen, King and Su 2016)
(1) There is a bijection
$\left\{\right.$ rank one modules in $\left.\mathrm{MCM}^{\mu_{n}} R_{k, n}\right\} \leftrightarrow\left\{\right.$ Plücker coordinates in $\left.\mathcal{A}_{k, n}\right\}$.
(2) For two rank one modules M and $N, \operatorname{Ext}^{1}(M, N)=0$ if and only if the corresponding Plücker coordinates are compatible.

Moreover, by showing a relationship between $\mathrm{MCM}^{\mu_{n}} R_{k, n}$ and the categorification of Geiß, Leclerc and Schröer, they know:
(3) Cluster-tilting subcategories of $\mathrm{MCM}^{\mu_{n}} R_{k, n}$ exist, and examples of such are given by maximal sets of compatible Plücker coordinates.
(9) There is a cluster character linking $\mathrm{MCM}^{\mu_{n}} R_{k, n}$ with the cluster algebra $\mathcal{A}_{k, n}$.

$k=2$ or 'Type A'

When $k=2, \mathrm{MCM}^{\mu_{n}} R_{k, n}$ is of finite type i.e. there are finitely many indecomposable objects.

There are bijections between
(1) indecomposable objects in $\mathrm{MCM}^{\mu_{n}} R_{2, n}$;
(2) cluster variables in $\mathcal{A}_{2, n}$;
(3) arcs in an n-gon.

And further bijections between
(1) cluster-tilting subcategories in $\mathrm{MCM}^{\mu_{n}} R_{2, n}$;
(2) clusters in $\mathcal{A}_{2, n}$;

(3) triangulations of the n-gon.

Grassmanian Cluster Algebras of Infinite Rank

In 2015, Grabowski and Gratz introduced an infinite version of $\mathcal{A}_{k, n}$:

$$
\mathcal{A}_{k}:=\mathbb{C}\left[p _ { I } \left|I \subset \mathbb{Z},|| |=k] / \mathcal{I}_{P}\right.\right.
$$

where \mathcal{I}_{P} is generated by Plücker relations.

- They showed \mathcal{A}_{k} can be endowed with the structure of a cluster algebra in infinitely many ways;
- Gratz also showed that \mathcal{A}_{k} is the colimit of the cluster algebras $\mathcal{A}_{k, n}$ in the category of rooted cluster algebras;
- Groechenig further showed that \mathcal{A}_{k} is isomorphic to the coordinate ring of an infinite rank Grassmanian.

Grassmanian Categories of Infinite Rank

Idea: Take $n \rightarrow \infty$ in the work of Jensen, King and Su:

- The singularity:

$$
R_{k, n}=\mathbb{C}[x, y] /\left(x^{k}-y^{n-k}\right) \quad \rightsquigarrow \quad R_{k}=\mathbb{C}[x, y] /\left(x^{k}\right)
$$

- The group action:

$$
\begin{aligned}
\mu_{n} \curvearrowright R_{k, n} \rightsquigarrow \mathbb{G}_{m} & =\mathbb{C}^{*} \curvearrowright R_{k}, \\
\zeta \cdot x & =\zeta x, \\
\zeta \cdot y & =\zeta^{-1} y
\end{aligned}
$$

- The category: $\mathrm{MCM}^{\mu_{n}} R_{k, n} \rightsquigarrow \mathrm{MCM}^{\mathbb{G}_{m}} R_{k}$.

Grassmanian Categories of Infinite Rank

But as the character group of \mathbb{G}_{m} is \mathbb{Z}, there is an equivalence of categories

$$
\mathrm{MCM}^{\mathbb{G}_{m}} R_{k} \simeq \mathrm{MCM}_{\mathbb{Z}} R_{k}
$$

where the latter is the category of \mathbb{Z}-graded $\mathrm{MCM} R_{k}$ modules, with $|x|=1$ and $|y|=-1$.

Definition

We call $\mathrm{MCM}_{\mathbb{Z}} R_{k}$ the Grassmanian category of type (k, ∞).

What do we know about this category?

- R_{k} is a non-isolated hypersurface singularity, and hence is Gorenstein and $\mathrm{MCM}_{\mathbb{Z}} R_{k}$ is a Frobenius category.
- When $k=2$, this is the curve singularity of type A_{∞} :
- By Buchweitz-Greuel-Schreyer, we know all indecomposable objects:

$$
\begin{array}{rll}
\left(x, y^{i}\right)(j) & \text { where } & i \geq 0, j \in \mathbb{Z} \\
\mathbb{C}[y](\ell) & \text { where } & \ell \in \mathbb{Z}
\end{array}
$$

- Our category is related to others in the literature studying cluster combinatorics of type A_{∞} : Holm-Jørgensen, Paquette-Yildirum.
- However, when $k \geq 3, \mathrm{MCM}_{\mathbb{Z}} R_{k}$ is wild.

Generalising rank one modules

Recall that JKS gave a bijection
$\left\{\right.$ rank one modules in $\left.\mathrm{MCM}^{\mu_{n}} R_{k, n}\right\} \leftrightarrow\left\{\right.$ Plücker coordinates in $\left.\mathcal{A}_{k, n}\right\}$.
We would like to replicate this, but as R_{k} is not reduced, we need to be more careful what we mean by "rank".

Definition

Let $\mathcal{F}=\mathbb{C}\left[x, y^{ \pm}\right] /\left(x^{k}\right)$ be the total ring of fractions for R_{k}. Then we say $M \in \mathrm{MCM}_{\mathbb{Z}} R_{k}$ is generically free of rank n if $M \otimes_{R_{k}} \mathcal{F}$ is a free \mathcal{F}-module of rank n.

Classifying generically free modules

Proposition (ACFGS)

(1) If $M \in \mathrm{MCM}_{\mathbb{Z}} R_{k}$ is generically free then $M \cong \Omega(N)$ for some finite dimensional (over \mathbb{C}) graded R_{k}-module N.
(2) $M \in \mathrm{MCM}_{\mathbb{Z}} R_{k}$ is generically free of rank one $\Longleftrightarrow M$ is isomorphic to a shift of a graded ideal of R_{k} which contains a power of y.
(3) Every homogeneous ideal of R_{k} can be generated by monomials.

Corollary (ACFGS)

A module $M \in \mathrm{MCM}_{\mathbb{Z}} R_{k}$ is generically free of rank one $\Longleftrightarrow M$ is isomorphic to

$$
\left(x^{k-1}, x^{k-2} y^{i_{1}}, x^{k-3} y^{i_{2}}, \ldots, x y^{i_{k-2}}, y^{i_{k-1}}\right)\left(i_{k}\right)
$$

for some $0 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k-2} \leq i_{k-1}$ and $i_{k} \in \mathbb{Z}$.

Connection to Plücker coordinates

Consider $k=4$ and $I=\left(x^{3}, x^{2} y^{2}, x y^{2}, y^{4}\right)(1)$ - how do we get a 4-subset?

deg !:	-5	-4	-3	-2	-1	0	1	2
\cdots	$x^{3} y^{7}$	$x^{3} y^{6}$	$x^{3} y^{5}$	$x^{3} y^{4}$	$x^{3} y^{3}$	$x^{3} y^{2}$	$x^{3} y$	x^{3}
\cdots	$x^{2} y^{6}$	$x^{2} y^{5}$	$x^{2} y^{4}$	$x^{2} y^{3}$	$x^{2} y^{2}$	$x^{2} y$	x^{2}	
\cdots	$x y^{5}$	$x y^{4}$	$x y^{3}$	$x y^{2}$	$x y$	x		
\cdots	y^{4}	y^{3}	y^{2}	y	1			

Look at where the rows end $-\ell(I)=(-5,-2,-1,2)$
This equivalent to $\ell(I)=\left(\operatorname{deg}_{\jmath}\left(y^{4}\right), \operatorname{deg}_{\jmath}\left(x y^{2}\right), \operatorname{deg}_{l}\left(x^{2} y^{2}\right), \operatorname{deg}_{\jmath}\left(x^{3}\right)\right)$.

Set $\ell(I)=\left(\operatorname{deg}_{l}\left(y^{i_{k-1}}\right), \operatorname{deg}_{l}\left(x y^{i_{k-2}}\right), \ldots, \operatorname{deg}_{l}\left(x^{k-2} y^{i-1}\right), \operatorname{deg}_{l}\left(x^{k-1}\right)\right)$.

- This gives a strictly increasing k-subset;
- $\operatorname{deg}_{/}\left(x^{k-1}\right)=k-1-i_{k}$, so we can immediately recover i_{k} (the shift of the ideal I) from the last term of $\ell(I)$;
- we may also recover each i_{j} from $\ell(I)_{k-j}=k-j-1-i_{j}-i_{k}$.

Theorem (ACFGS)
There is a bijection

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { generically free modules of } \\
\text { rank one in } \mathrm{MCM}_{\mathbb{Z}} R_{k}
\end{array}\right\} & \longleftrightarrow\left\{\begin{array}{c}
\text { Plücker coordinates } \\
\text { in } \mathcal{A}_{k}
\end{array}\right\} \\
I & \mapsto
\end{aligned}
$$

Moreover, $\operatorname{Ext}^{1}(I, J)=0$ if and only if $p_{\ell(I)}$ and $p_{\ell(J)}$ are compatible (or equivalently $\ell(I)$ and $\ell(J)$ are noncrossing).

Our combinatorial tool

Associated to two k-subsets $\ell=\left(\ell_{1}, \ldots, \ell_{k}\right)$ and $m=\left(m_{1}, \ldots, m_{k}\right)$, we get two staircase paths in a $(k \times k)$ grid:

- Both paths go from the top left to the bottom right;
- For path A (respectively path B), a box (i, j) lies above the path if and only if $\ell_{i} \leq m_{j}$ (respectively $\ell_{i}<m_{j}$).
Take $k=4$ and consider the subsets ℓ and m with

$$
m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}
$$

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.

For example, $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$.

If ℓ and m are disjoint then:

- $A(\ell, m)=B(\ell, m)$;
- we can describe the path by reading from smallest to largest:
- each time you read an m go right;
- each time you read an ℓ go down.
- We can also read the number of 'crossings' between ℓ and m using the number of steps.
- In particular, ℓ and m are noncrossing if and only if the staircase path has a single step:

From these staircases, we extract two numbers:
Definition
Let $\alpha(\ell, m)$ be the number of upper diagonals that lie completely above the staircase path in $A(\ell, m)$.

Similarly:

Definition

Let $\beta(\ell, m)$ be the number of lower diagonals that lie completely below the staircase path in $B(\ell, m)$.

Theorem (ACFGS)

If ℓ and m are two k-subsets, then ℓ and m are noncrossing if and only if

$$
\alpha(\ell, m)+\beta(\ell, m)-|\ell \cap m|=k
$$

Easy to show when ℓ and m are disjoint (using the single step pictures) then use induction by removing the common terms, and showing how α and β change.
Example: For $m_{1}<\ell_{1}<\ell_{2}=m_{2}<m_{3}<\ell_{3}<m_{4}<\ell_{4}$, we have

$$
\alpha(\ell, m)+\beta(\ell, m)-|\ell \cap m|=3+4-1=6 \neq 4
$$

and we see that there is a crossing $m_{1}<\ell_{1}<m_{3}<\ell_{3}$.

Connection to Ext dimension

Take two generically free modules of rank one in $\mathrm{MCM}_{\mathbb{Z}} R_{k}$, say $/$ and J. Then to calculate $\operatorname{Ext}^{1}(I, J)$, use the matrix factorisation of I

$$
R_{k}^{k} \xrightarrow{M} R_{k}^{k} \xrightarrow{N} R_{k}^{k} \rightarrow I \rightarrow 0
$$

to give a graded projective presentation of I. Apply $\operatorname{grHom}(-, J)$, noting that $\operatorname{grHom}\left(R_{k}(m), J\right) \cong J(-m)$ to get

$$
\mathbb{J} \xrightarrow{N^{T}} \mathbb{J}(1) \xrightarrow{M^{T}} \mathbb{J}(k)
$$

where each \mathbb{J} is a direct sum of k appropriately shifted copies of J. Then

$$
\operatorname{Ext}^{1}(I, J)=\left(\operatorname{ker}\left(M^{T}\right)\right)_{0} /\left(\operatorname{im}\left(N^{T}\right)\right)_{0}
$$

Then, simply using rank-nullity we may show

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Ext}^{1}(I, J)\right)= & \operatorname{dim}_{\mathbb{C}}\left(\left(\operatorname{ker}\left(M^{T}\right)\right)_{0}\right)-\operatorname{dim}_{\mathbb{C}}\left(\left(\operatorname{im}\left(N^{T}\right)\right)_{0}\right) \\
= & \left.\left(\operatorname{dim}_{\mathbb{C}}\left(\mathbb{J}(1)_{0}\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{im}\left(M^{T}\right)\right)_{0}\right)\right) \\
& \left.-\left(\operatorname{dim}_{\mathbb{C}}\left(\mathbb{J}_{0}\right)-\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(N^{T}\right)\right)_{0}\right)\right)
\end{aligned}
$$

Then, simple calculations using the matrices M and N shows

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{C}}\left(\mathbb{J}_{0}\right)-\operatorname{dim}_{\mathbb{C}}\left(\mathbb{J}(1)_{0}\right) & =|\ell(I) \cap \ell(J)| \\
\left.\operatorname{dim}_{\mathbb{C}}\left(\operatorname{iim}\left(M^{T}\right)\right)_{0}\right) & =k-\beta(\ell(I), \ell(J)) \\
\left.\operatorname{dim}_{\mathbb{C}}\left(\operatorname{ker}\left(N^{T}\right)\right)_{0}\right) & =\alpha(\ell(I), \ell(J))
\end{aligned}
$$

Theorem (ACFGS)
$\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Ext}^{1}(I, J)\right)=\alpha(\ell(I), \ell(J))+\beta(\ell(I), \ell(J))-k-|\ell(I) \cap \ell(J)|$.

Combining the results

Theorem (ACFGS)
If ℓ and m are two k-subsets, then ℓ and m are noncrossing if and only if

$$
\alpha(\ell, m)+\beta(\ell, m)-|\ell \cap m|=k
$$

Theorem (ACFGS)
$\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Ext}^{1}(I, J)\right)=\alpha(\ell(I), \ell(J))+\beta(\ell(I), \ell(J))-k-|\ell(I) \cap \ell(J)|$.

Corollary (ACFGS)
If I and J are two generically free modules of rank 1 in $\mathrm{MCM}_{\mathbb{Z}} R_{k}$ then $\operatorname{Ext}^{1}(I, J)=0$ if and only if $\ell(I)$ and $\ell(J)$ are noncrossing.

$k=2$ case

Recall that when $k=2$, all indecomposable objects are of the form:
$\left(x, y^{i}\right)(j) \quad$ where $\quad i \geq 0, j \in \mathbb{Z}$
$\mathbb{C}[y](\ell)$ where $\quad \ell \in \mathbb{Z}$.

$k=2$ case

Recall that when $k=2$, all indecomposable objects are of the form:

$$
\begin{aligned}
\left(x, y^{i}\right)(j) & \text { where } \\
\mathbb{C}[y](\ell) & i \geq 0, j \in \mathbb{Z} \\
\text { where } & \ell \in \mathbb{Z}
\end{aligned}
$$

The $\left(x, y^{i}\right)(j)$ are the generically free modules, which are all of rank 1.
They can be classified by arcs in an ∞-gon:

$$
\left(x, y^{i}\right)(j) \quad \rightarrow \quad(-i-j, 1-j) \quad \rightarrow
$$

$k=2$ case

Recall that when $k=2$, all indecomposable objects are of the form:

$$
\begin{aligned}
\left(x, y^{i}\right)(j) & \text { where } \\
\mathbb{C}[y](\ell) & i \geq 0, j \in \mathbb{Z} \\
\text { where } & \ell \in \mathbb{Z}
\end{aligned}
$$

The $\left(x, y^{i}\right)(j)$ are the generically free modules, which are all of rank 1.
They can be classified by arcs in an ∞-gon:

$$
\left(x, y^{i}\right)(j) \quad \rightarrow \quad(-i-j, 1-j) \quad \rightarrow
$$

Sets of noncrossing arcs correspond to rigid subcategories of $\mathrm{MCM}_{\mathbb{Z}} R_{2}$.

Holm and Jørgensen cluster combinatorics of A_{∞}

These are the same combinatorics studied by Holm and Jørgensen. They consider the category

$$
D_{d g}^{f}(\mathbb{C}[y])
$$

i.e. the derived category of dg modules with finite dimensional homology over the dga $\mathbb{C}[y]$ with zero differential.
indecomposable objects \longleftrightarrow arcs in an ∞-gon maximal rigid subcategories \longleftrightarrow triangulations in an ∞-gon

Let \mathcal{C} be the full subcategory of $\mathrm{MCM}_{\mathbb{Z}} R_{2}$ generated by generically free modules. Then

$$
\underline{\mathcal{C}} \simeq D_{d g}^{f}(\mathbb{C}[y])
$$

Holm and Jørgensen cluster combinatorics of A_{∞}

Since $\underline{\mathcal{C}} \simeq D_{d g}^{f}(\mathbb{C}[y])$, the cluster-tilting subcategories in both are the same and by Holm-Jørgensen, these correspond to triangulations of the ∞-gon containing either:

a fountain

a leap frog

What about the other modules?

We can also include the modules $\mathbb{C}[y](\ell)$ in the combinatorial model by completing the ∞-gon i.e. adding a point at $-\infty$.

- If (a, b) is a finite arc and $(-\infty,-\ell)$ is an infinite arc, then Ext ${ }^{1}$ vanishes between the

$$
\mathbb{C}[y](\ell) \leftrightarrow(-\infty,-\ell)
$$ corresponding modules if and only if the arcs are noncrossing.

$$
\operatorname{Ext}^{1}(\mathbb{C}[y], \mathbb{C}[y](\ell))=\left\{\begin{array}{lc}
\mathbb{C} & \text { if } \ell<0 \\
0 & \text { otherwise }
\end{array}\right.
$$

- So maximal rigid subcategories in $\mathrm{MCM}_{\mathbb{Z}} R_{2}$ are maximal sets of noncrossing arcs with at most one infinite arc.

Cluster-tilting subcategories

Theorem (ACFGS)
The cluster-tilting subcategories of $\mathrm{MCM}_{\mathbb{Z}} R_{2}$ correspond precisely to maximal sets of noncrossing arcs in the completed ∞-gon, which contain a fountain.

Using this combinatorial model, we are able to see connections to other work in the literature.

Proposition (ACFGS)

$\mathrm{MCM}_{\mathbb{Z}} R_{2}$ is equivalent to the completed discrete cluster category of infinite type corresponding to a disk with a single accumulation point, as studied by Paquette-Yildirum.

Thank you!

