# Derived equivalences for skew-gentle algebras.

Claire Amiot, joint with Thomas Brüstle

FD seminar, July 2020

Aim: combine the following two constructions.

• from  $\Lambda$  an algebra acted on by a group G, we can define a new algebra  $\Lambda G$ , and nice functors linking the representations of  $\Lambda$  and the representations of  $\Lambda G$  [Reiten-Riedtmann 85]

Aim : combine the following two constructions.

- from  $\Lambda$  an algebra acted on by a group G, we can define a new algebra  $\Lambda G$ , and nice functors linking the representations of  $\Lambda$  and the representations of  $\Lambda G$  [Reiten-Riedtmann 85]
- ② to  $\Lambda$  a gentle algebra, one can associate a marked surface with a collection of arcs [Opper-Plamondon-Schroll 2018], and algebraic properties of  $\mathcal{D}^b(\Lambda)$  can be interpreted using the geometry of the marked surface [A-Plamondon-Schroll, Opper 2019].

Aim : combine the following two constructions.

- from  $\Lambda$  an algebra acted on by a group G, we can define a new algebra  $\Lambda G$ , and nice functors linking the representations of  $\Lambda$  and the representations of  $\Lambda G$  [Reiten-Riedtmann 85]
- ② to  $\Lambda$  a gentle algebra, one can associate a marked surface with a collection of arcs [Opper-Plamondon-Schroll 2018], and algebraic properties of  $\mathcal{D}^b(\Lambda)$  can be interpreted using the geometry of the marked surface [A-Plamondon-Schroll, Opper 2019].

#### Question

Let  $\Lambda$  and  $\Lambda'$  be gentle algebras with a certain action of a group G. Can we find a geometric interpretation of the fact that  $\Lambda G$  and  $\Lambda' G$  have the same derived category?

**Notation**: k field, G finite abelian group such that |G| invertible in k,  $\Lambda$  finite dimensional k-algebra with a G-action by automorphism.

We define  $\Lambda G$  as

$$\Lambda G = \Lambda \otimes kG$$
 and  $(\lambda \otimes g).(\lambda' \otimes g') = \lambda g(\lambda') \otimes gg'.$ 

**Notation**: k field, G finite abelian group such that |G| invertible in k,  $\Lambda$  finite dimensional k-algebra with a G-action by automorphism.

We define  $\Lambda G$  as

$$\Lambda G = \Lambda \otimes kG \text{ and } (\lambda \otimes g).(\lambda' \otimes g') = \lambda g(\lambda') \otimes gg'.$$

Since  $\Lambda G$  is a natural left  $\Lambda$ -module, we get adjoint functors

$$\mathcal{D}^b(\Lambda) \xrightarrow[Res]{-\frac{L}{\Diamond} \Lambda G} \mathcal{D}^b(\Lambda G)$$

**Notation**: k field, G finite abelian group such that |G| invertible in k,  $\Lambda$  finite dimensional k-algebra with a G-action by automorphism.

We define  $\Lambda G$  as

$$\Lambda G = \Lambda \otimes kG$$
 and  $(\lambda \otimes g).(\lambda' \otimes g') = \lambda g(\lambda') \otimes gg'.$ 

Since  $\Lambda G$  is a natural left  $\Lambda$ -module, we get adjoint functors

$$\mathcal{D}^b(\Lambda) \xrightarrow[\Lambda]{-\underset{\wedge}{\otimes} \Lambda G} \mathcal{D}^b(\Lambda G)$$

Let  $\widehat{G} = \operatorname{Hom}(G, k^*)$  be the dual group. Then  $\widehat{G}$  acts on  $\Lambda G$  by

$$\chi.(\lambda \otimes g) = \chi(g)\lambda \otimes g$$

## Proposition (RR'85)

The algebras  $(\Lambda G)\widehat{G}$  and  $\Lambda$  are Morita equivalent.



## Example

Let  $\Lambda = k$  with trivial action of  $G = \mathbb{Z}/2\mathbb{Z}$ .

Then  $\Lambda G = k \times k$ . The action of  $\widehat{G}$  exchanges the two copies of k.

 $\Lambda G \widehat{G} = \operatorname{Mat}_2(k)$ . It is Morita equivalent to k.

## Example

Let  $\Lambda = k$  with trivial action of  $G = \mathbb{Z}/2\mathbb{Z}$ .

Then  $\Lambda G = k \times k$ . The action of  $\widehat{G}$  exchanges the two copies of k.  $\Lambda G \widehat{G} = \operatorname{Mat}_2(k)$ . It is Morita equivalent to k.

#### Example

#### Definition

An object  $T \in \mathcal{D}^b(\Lambda)$  is called *tilting* if

$$\forall i \neq 0, \ \operatorname{Ext}^i(T, T) = 0 \quad \text{and} \quad \operatorname{thick}(T) = \mathcal{D}^b(\Lambda).$$

## Theorem (Happel-Rickard)

Let  $\Lambda$  and  $\Lambda'$  be finite dimensional algebras. Then  $\mathcal{D}^b(\Lambda) \simeq \mathcal{D}^b(\Lambda')$  if and only if there exists a tilting object  $T \in \mathcal{D}^b(\Lambda)$  such that  $\operatorname{End}(T) \simeq \Lambda$ .

#### Definition

An object  $T \in \mathcal{D}^b(\Lambda)$  is called *tilting* if

$$\forall i \neq 0, \ \operatorname{Ext}^i(T, T) = 0 \quad \text{and} \quad \operatorname{thick}(T) = \mathcal{D}^b(\Lambda).$$

#### Theorem (Happel-Rickard)

Let  $\Lambda$  and  $\Lambda'$  be finite dimensional algebras. Then  $\mathcal{D}^b(\Lambda) \simeq \mathcal{D}^b(\Lambda')$  if and only if there exists a tilting object  $T \in \mathcal{D}^b(\Lambda)$  such that  $\operatorname{End}(T) \simeq \Lambda$ .

#### Facts:

- If  $T \in \mathcal{D}^b(\Lambda)$  is G-invariant, then  $\operatorname{End}(T)$  has a natural G-action.
- If T is tilting G-invariant, then  $T \overset{L}{\otimes} \Lambda G$  is tilting  $\widehat{G}$ -invariant.

# Theorem (A-Brüstle)

• Let  $\Lambda$  be an algebra with G-actions, then we have

 $\{ \text{ $G$-tilting subcat. of $\mathcal{D}^b(\Lambda)$} \} \stackrel{1-1}{\longleftrightarrow} \{ \text{ $\widehat{G}$-tilting subcat. of $\mathcal{D}^b(\Lambda G)$} \}$ 

## Theorem (A-Brüstle)

• Let  $\Lambda$  be an algebra with G-actions, then we have

$$\{ \text{ $G$-tilting subcat. of $\mathcal{D}^b(\Lambda)$} \} \stackrel{1-1}{\longleftrightarrow} \{ \text{ $\widehat{G}$-tilting subcat. of $\mathcal{D}^b(\Lambda G)$} \}$$

2 Let  $\Lambda$  and  $\Lambda'$  be G-algebras, then

$$\mathcal{D}^{\textit{b}}(\Lambda) \underset{\textit{G}}{\sim} \mathcal{D}^{\textit{b}}(\Lambda') \Rightarrow \mathcal{D}^{\textit{b}}(\Lambda \textit{G}) \underset{\widehat{\textit{G}}}{\sim} \mathcal{D}^{\textit{b}}(\Lambda' \textit{G}).$$

## Theorem (A-Brüstle)

**1** Let  $\Lambda$  be an algebra with G-actions, then we have

$$\{ G\text{-tilting subcat. of } \mathcal{D}^b(\Lambda) \} \stackrel{1-1}{\longleftrightarrow} \{ \widehat{G}\text{-tilting subcat. of } \mathcal{D}^b(\Lambda G) \}$$

2 Let  $\Lambda$  and  $\Lambda'$  be G-algebras, then

$$\mathcal{D}^b(\Lambda) \underset{G}{\sim} \mathcal{D}^b(\Lambda') \Rightarrow \mathcal{D}^b(\Lambda G) \underset{\widehat{G}}{\sim} \mathcal{D}^b(\Lambda' G).$$

#### Remark

$$\mathcal{D}^b(\Lambda G) \underset{\widehat{G}}{\sim} \mathcal{D}^b(\Lambda' G) \Rightarrow \mathcal{D}^b(\Lambda G \widehat{G}) \underset{G}{\sim} \mathcal{D}^b(\Lambda' G \widehat{G}) \Rightarrow \mathcal{D}^b(\Lambda) \sim \mathcal{D}^b(\Lambda').$$

But it is not clear that it implies  $\mathcal{D}^b(\Lambda) \sim \mathcal{D}^b(\Lambda')$ .

To (S, M, P, D), one can associate

To (S, M, P, D), one can associate

ullet a **line field**  $\eta$  on the (interior of the) marked surface;

To (S, M, P, D), one can associate

- ullet a **line field**  $\eta$  on the (interior of the) marked surface;
- an algebra  $\Lambda = kQ/I$  which is **gentle**.

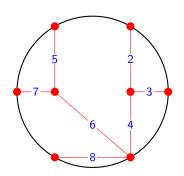
To (S, M, P, D), one can associate

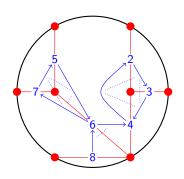
- ullet a **line field**  $\eta$  on the (interior of the) marked surface;
- an algebra  $\Lambda = kQ/I$  which is **gentle**.

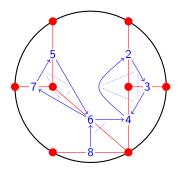
#### Theorem (APS-O '19)

Let  $\Lambda$  and  $\Lambda'$  be gentle algebras associated with (S, M, P, D) and (S', M', P', D') resp. The following are equivalent

- $(S, M, P, \eta)$  and  $(S', M', P', \eta')$  are diffeomorphic.









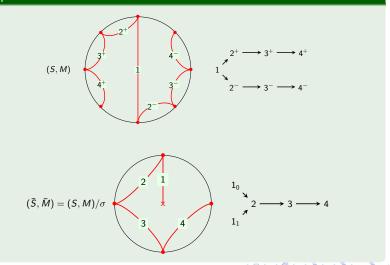
Let  $\sigma \in \operatorname{Homeo}^+(S)$  of order 2 with finitely many fixed points such that  $\sigma(M) = M$ ,  $\sigma(P) = P$  and  $\sigma(D) = D$ . This defines a  $\mathbb{Z}/2\mathbb{Z}$ -action on  $\Lambda$ .

**Aim**: Give a geometric model for the algebras  $\Lambda G$ .

Let  $\sigma \in \operatorname{Homeo}^+(S)$  of order 2 with finitely many fixed points such that  $\sigma(M) = M$ ,  $\sigma(P) = P$  and  $\sigma(D) = D$ . This defines a  $\mathbb{Z}/2\mathbb{Z}$ -action on  $\Lambda$ .

**Aim**: Give a geometric model for the algebras  $\Lambda G$ .

#### Example



# Proposition (AB)

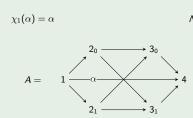
 $\Lambda G$  is a skew-gentle algebra. All skew-gentle algebras are obtained in this way.

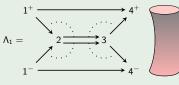
**Skew-gentle algebras** :[Geiss-de la Peña '95]. contains all gentle algebras, and  $D_n$ ,  $\widetilde{D}_n$  quivers.

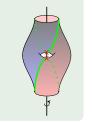
garland  $1 \underbrace{ \begin{array}{c} 2_0 \\ \\ 2_1 \\ \end{array} } \underbrace{ \begin{array}{c} 3_0 \\ \\ 3_1 \\ \end{array} } \underbrace{ \begin{array}{c} 4_0 \\ \\ 4_1 \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \\ \\ \end{array} } \underbrace{ \begin{array}{c} 5_1 \\ \\ \\ \\ \\ \\ \\$ 

## But, if A is skew-gentle, then (S, M, D) is not unique.

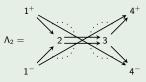
## Example











## Theorem (AB'19)

Let A and A' be two skew-gentle algebras, and  $\Lambda$  and  $\Lambda'$  the corresponding G-gentle algebras. Then the following are equivalent :

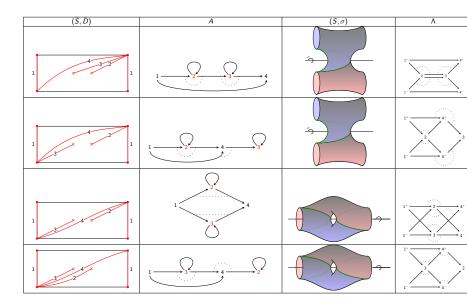
- **3** there exists a G-diffeomorphism  $(S, M, P, \eta) \rightarrow (S', M', P', \eta')$ .

#### Theorem (AB'19)

Let A and A' be two skew-gentle algebras. Then the following are equivalent :

- lacktriangledown there exists a  $\widehat{G}$ -invariant tilting object T in  $\mathcal{D}^b(A)$  with  $\operatorname{End}(T) \simeq A'$ ;
- ② there exists a homeomorphism  $(\bar{S}, \bar{M}, \bar{\eta}) \rightarrow (\bar{S}', \bar{M}', \bar{\eta}')$ .

Here  $\bar{S}$  is the orbifold  $S/\sigma$ .



# Thank you very much

Tomorrow: https://researchseminars.org/seminar/charms-inaugural-meeting