A geomteric model for the syzygies over certain 2-Calabi-Yau tilted algebras

Ralf Schiffler and Khrystyna Serhiyenko

Overview - There is a correspondence

2-CY tilted algebra of a certain type
\longleftrightarrow Regular polygon with fixed system of diagonals $\rho(x), x \in Q_{0}$

projectifs $\underset{3}{\frac{1}{2}}, \frac{2}{3}, \frac{3}{4}, \frac{4}{2}$

Periodic projective resolution

Overview - There is a correspondence

2-CY tilted algebra of a certain type
non-projective syzygies AR translation Irred. morph.

Regular polygon with fixed system of diagonals $\rho(x), x \in Q_{0}$
\longleftrightarrow 2-diagonals
\longleftrightarrow Rotation R^{2}
\longleftrightarrow 2-pivots

Overview - Previous work

- Bastian-Holm-Ladkani (2013). Classification of derived equivalence classes of cluster-tilted algebras of Dynkin type.
- Chen-Geng-Lu (2015). Classification of the syzygy categories of cluster-tilted algebras of Dynkin type.
- case by case analysis, using [BHL]
- unions of $\bmod \Lambda_{n}$, where $\Lambda_{n}=1 \overleftrightarrow{\hookrightarrow} 2 \rightarrow \cdots \rightarrow n / \mathrm{rad}^{n-1}$
- Baur-Marsh (2008). Geometric model for 2-cluster categories $\mathcal{C}_{\mathbb{A}_{n}}^{2}$ via 2-diagonals in a $(2 n+4)$-gon.
- Observation $\underline{\bmod } \Lambda_{n} \cong \mathcal{C}_{\mathbb{A}_{n-2}}^{2}$
\Rightarrow We should be able to think of syzygies as 2-diagonals in a regular polygon.

Our Motivation: Find an explicit and more general construction.

Plan

Definitions et recollections

The construction

Conjecture and Theorem

Syzygies

- M syzygy $\Longleftrightarrow M \subset P$ projective
- CMP $B=$ category of syzygies over B
- CMP $B=$ stable category

Exemple
B hereditary \Rightarrow CMP $B=\operatorname{proj} B$
\Rightarrow CMP B is trivial
because submodules of projectives are projective.

Syzygies

Let $N \in \bmod B$ and $f: P(N) \rightarrow N$ a fixed projective cover. Then $\Omega N=\operatorname{ker} f$ is called the syzygy of N.

$$
M \text { is a syzygy over } B \Leftrightarrow \exists N \text { s.t. } M=\Omega N
$$

Example
B 2-Calabi-Yau tilted $\Rightarrow M \in \operatorname{CMP} B \Leftrightarrow \operatorname{Ext}_{B}^{1}(M, B)=0$

- The syzygies over B are the (maximal) Cohen-Macauley modules over B.
- $\underline{C M P}(B)$ is a triangulated category with shift Ω.

Plan

Definitions et recollections

The construction

Conjecture and Theorem

From the quiver Q to the checkerboard polygon \mathcal{S}

The algebra B will be given by a quiver Q with potential. We construct a checkerboard polygon \mathcal{S} in three steps.

The quiver Q

Let Q be a quiver without loops and 2-cycles s.t.

- Q has no parallel arrows ——
- Q is planar
- faces of $Q=$ oriented chordless cycles in Q
- for each arrow α
- either α lies in a unique chordless cycle boundary arrows
- or α lies in exactly two chordless cycles interior arrows
- Potential $W=$ sum of all chordless cycles

Example.

The dual graph G of Q

$G=\left(G_{0}, G_{1}\right)$

- $G_{0}=\{$ chordless cycles in $Q\} \cup\{$ boundary arrows of $Q\}$
- G_{1}
- $C-C^{\prime}$ if the two chordless cycles C, C^{\prime} share an arrow trunk edges
- $\overline{C-\alpha}$ if α is a boundary arrow in the chordless cycle C leaf edges

Example.

The dual graph G of Q

Example.

Remark: Additional condition on Q

Q is such that its dual graph G is a tree (= connected, no cycles).
This means for each pair of chordless cycles C, C^{\prime} of Q there exists a unique sequence of chordless cycles $C=C_{1}, C_{2}, \ldots, C_{t}=C^{\prime}$ such that C_{i} and C_{i+1} share an arrow.

Thus we exclude, for example, the following quivers.

Remark: Additional condition on Q

This one is also excluded.

The completed twisted dual graph \widetilde{G}

G is a tree. We choose a root C_{0} such that C_{0} is a chordless cycle that has at most one neighbor in the trunk. We are going to twist the graph G along every edge of the trunk starting at the edge $C_{0}-C_{1}$.

Example of the twist along $C_{0}-C_{1}$.

The completed twisted dual graph \widetilde{G}

Then we are connecting two neighboring leaves of the graph

- by a new edge, if it produces a face with an even number of vertices;
- to a new vertex by adding two new edges, otherwise.

Example.

The completed twisted dual graph \widetilde{G}

Example.

...if this seems arbitrary to you so far, you are not alone...

One more step !

The polygon \mathcal{S}

So far we have
Q quiver $\rightsquigarrow G$ dual graph $\rightsquigarrow \widetilde{G}$ completed twisted graph

The last step is to construct the polygon \mathcal{S} using the medial graph of \widetilde{G}.

The vertices of the medial graph are the edges of \widetilde{G}, and two vertices are connected if the corresponding edges are consecutive in a face of \widetilde{G}.

The polygon \mathcal{S} is obtained from the medial graph of \widetilde{G} by adding one edge for each leaf of G.
$\widetilde{G} \rightsquigarrow \mathcal{S}$

$Q \rightsquigarrow \mathcal{S}$

Properties of \mathcal{S}

- The intersection points in the checkerboard pattern of \mathcal{S} are the arrows in Q.
- The shaded regions in the interior of \mathcal{S} are the chordless cycles of Q.
- The shaded regions at the boundary of \mathcal{S} are the boundary arrows of Q.
- The white regions have an even number of vertices and exactly one or two of them lie on the boundary of \mathcal{S}.
- The number of vertices of \mathcal{S} is even. We label them clockwise $1,2,3, \ldots, 2 N$.
- Each line $\rho(x), x \in Q_{0}$ of the checkerboard pattern is a 2-diagonal, i.e. it connects an even vertex to an odd vertex.

Orientation and degree

Let $\operatorname{Diag}(\mathcal{S})=\{$ oriented 2-diagonals of $\mathcal{S}\}$ where the orientation of the 2-diagonal is in the direction from the odd vertex to the even vertex.

Each $\gamma \in \operatorname{Diag}(\mathcal{S})$ crosses several checkerboard lines $\rho(x), x \in Q_{0}$. The degree of the crossing between γ and $\rho(x)$ is
$\begin{cases}0 & \text { if the crossing is from left to right; } \\ 1 & \text { if the crossing is from right to left. }\end{cases}$
We define

$$
\begin{aligned}
& P_{0}(\gamma)=\oplus P(x) \text { sum over } x \text { s.t. } \gamma \text { crosses } \rho(x) \text { in degree } 0 \\
& P_{1}(\gamma)=\oplus P(x) \text { sum over } x \text { s.t. } \gamma \text { crosses } \rho(x) \text { in degree } 1 .
\end{aligned}
$$

2-diagonals \Leftrightarrow syzygies

Conjecture

For each 2-diagonal γ in \mathcal{S} there exists a morphism

$$
f_{\gamma}: P_{1}(\gamma) \rightarrow P_{0}(\gamma)
$$

producing an equivalence of categories

$$
\begin{aligned}
F: \operatorname{Diag}(\mathcal{S}) & \rightarrow \operatorname{CMP} B \\
\gamma & \mapsto \operatorname{coker} f_{\gamma}=: M_{\gamma} \quad \text { such that } \\
\rho(i) & \leftrightarrow \operatorname{rad} P(i) \\
R & \leftrightarrow \Omega \\
R^{2} & \leftrightarrow \tau^{-1}=\text { Auslander-Reiten translation } \\
\text { 2-pivots } & \leftrightarrow \text { irreducible morphisms }
\end{aligned}
$$

where R is the clockwise rotation by $2 \pi / 2 N$.

2-pivots

Figure: γ^{\prime} is the 2-pivot of γ fixing the endpoint a and $\gamma^{\prime \prime}$ is the 2-pivot of γ fixing the endpoint b.

Corollary

Assuming the conjecture holds, the size 2 N of \mathcal{S} is a derived invariant for the algebra B which can be computed combinatorially from the quiver Q of B.

Main Result

Theorem (S.-Serhiyenko)
The conjecture holds if each chordless cycle is of length three.

Remark

1. The difficult part is to find the correct definition of $f_{\gamma}: P_{1}(\gamma) \rightarrow P_{0}(\gamma)$.
2. f_{γ} is not generic in general.
3. $M_{\gamma}=$ coker f_{γ} is rigid, \rightsquigarrow determined by its g-vector

Idea of the proof

- Define f_{γ}.
- Show that $f_{\gamma} \circ f_{R(\gamma)}$ is exact. Thus $\Omega M_{\gamma}=M_{R(\gamma)}$
- Show that M_{γ} is indecomposable and independent of the choice of representative in the homotopy class of γ.
- Show that 2-pivots are irreducible morphisms.
- Show that there are no other syzygies.
- 2-pivot meshes are Auslander-Reiten triangles. $\rightsquigarrow \operatorname{Diag}(\mathcal{S})$ gives a finite component of the AR quiver of CMP B.
- Show that there are no other components.

Corollary

Two of our algebras B, B^{\prime} satisfy CMP $B \cong$ CMP B^{\prime} if and only if the checkerboard polygons $\mathcal{S}, \mathcal{S}^{\prime}$ have the same number of vertices.

Example.

Current and future work

- General case, no restriction on the length of chordless cycles.
- Remove the condition
- dual graph is a tree
- not connected \checkmark
- with cycles \rightsquigarrow more complicated surfaces than polygons
- faces of Q are chordless cycles
- Q planar
- Q without parallel arrows
- Study the effect of mutations on the checkerboard polygon
- Study tilting theory,
- from $\operatorname{Diag}(\mathcal{S})=\underline{\mathrm{CMP}} B$ to $\bmod B$

CMP B

CMP B

