A geomteric model for the syzygies over certain 2-Calabi-Yau tilted algebras

Ralf Schiffler and Khrystyna Serhiyenko

Overview — There is a correspondence

projectifs $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 2 \end{bmatrix}$

Periodic projective resolution

Overview — There is a correspondence

Overview — Previous work

- Bastian-Holm-Ladkani (2013). Classification of derived equivalence classes of cluster-tilted algebras of Dynkin type.
- Chen-Geng-Lu (2015). Classification of the syzygy categories of cluster-tilted algebras of Dynkin type.
 - case by case analysis, using [BHL]
 - unions of $\underline{\text{mod}} \Lambda_n$, where $\Lambda_n = 1 \stackrel{\checkmark}{\Rightarrow} 2 \rightarrow \cdots \rightarrow n / \text{rad}^{n-1}$
- ▶ Baur-Marsh (2008). Geometric model for 2-cluster categories $\mathcal{C}^2_{\mathbb{A}_n}$ via 2-diagonals in a (2n+4)-gon.
- ▶ Observation $\underline{\text{mod}} \Lambda_n \cong \mathcal{C}^2_{\mathbb{A}_{n-2}}$
- \Rightarrow We should be able to think of syzygies as 2-diagonals in a regular polygon.

Our Motivation: Find an explicit and more general construction.

Plan

Definitions et recollections

The construction

Conjecture and Theorem

Syzygies

- ▶ M syzygy $\iff M \subset P$ projective
- ► CMP *B* = category of syzygies over *B*
- ightharpoonup CMP B = stable category

Exemple

$$B \text{ hereditary} \Rightarrow CMP B = \text{proj } B$$

 $\Rightarrow CMP B \text{ is trivial}$

because submodules of projectives are projective.

Syzygies

Let $N \in \text{mod } B$ and $f : P(N) \to N$ a fixed projective cover. Then $\Omega N = \ker f$ is called the *syzygy of* N.

$$0 \longrightarrow \Omega \: N \longrightarrow P(N) \longrightarrow N \longrightarrow 0$$

M is a syzygy over $B \Leftrightarrow \exists N \ s.t. \ M = \Omega N$

Example

B 2-Calabi-Yau tilted $\Rightarrow M \in \mathsf{CMP}\ B \Leftrightarrow \mathsf{Ext}^1_B(M,B) = 0$

- ► The syzygies over *B* are the (maximal) Cohen-Macauley modules over *B*.
- ▶ $\underline{CMP}(B)$ is a triangulated category with shift Ω .

Plan

Definitions et recollections

The construction

Conjecture and Theorem

From the quiver Q to the checkerboard polygon ${\mathcal S}$

The algebra B will be given by a quiver Q with potential. We construct a checkerboard polygon S in three steps.

The quiver Q

Let Q be a quiver without loops and 2-cycles s.t.

- ▶ Q has no parallel arrows ==> •
- Q is planar
- ▶ faces of *Q* = oriented chordless cycles in *Q*
- \triangleright for each arrow α
 - ightharpoonup either α lies in a unique chordless cycle
 - ightharpoonup or α lies in exactly two chordless cycles interior arrows

boundary arrows

ightharpoonup Potential W = sum of all chordless cycles

The dual graph G of Q

$$G=(G_0,G_1)$$

- ▶ $G_0 = \{\text{chordless cycles in } Q\} \cup \{\text{boundary arrows of } Q\}$
- ▶ *G*₁
 - ► *C*—*C'* if the two chordless cycles *C*, *C'* share an arrow trunk edges
 - ▶ \overline{C} — α if α is a boundary arrow in the chordless cycle C leaf edges

The dual graph G of Q

Remark: Additional condition on Q

Q is such that its dual graph G is a tree (= connected, no cycles).

This means for each pair of chordless cycles C, C' of Q there exists a unique sequence of chordless cycles $C = C_1, C_2, \dots, C_t = C'$ such that C_i and C_{i+1} share an arrow.

Thus we exclude, for example, the following quivers.

Remark: Additional condition on Q

This one is also excluded.

The completed **twisted** dual graph G

G is a tree. We choose a root C_0 such that C_0 is a chordless cycle that has at most one neighbor in the trunk. We are going to twist the graph G along every edge of the trunk starting at the edge C_0 — C_1 .

Example of the twist along C_0 — C_1 .

The **completed** twisted dual graph G

Then we are connecting two neighboring leaves of the graph

- by a new edge, if it produces a face with an even number of vertices;
- to a new vertex by adding two new edges, otherwise.

The **completed** twisted dual graph G

...if this seems arbitrary to you so far, you are not alone...

One more step !

The polygon ${\cal S}$

So far we have Q quiver $\leadsto G$ dual graph $\leadsto \widetilde{G}$ completed twisted graph

The last step is to construct the polygon S using the medial graph of \widetilde{G} .

The vertices of the **medial graph** are the edges of \widetilde{G} , and two vertices are connected if the corresponding edges are consecutive in a face of \widetilde{G} .

The polygon $\mathcal S$ is obtained from the medial graph of $\widetilde G$ by adding one edge for each leaf of G.

 $Q \leadsto S$

Properties of S

- ▶ The intersection points in the checkerboard pattern of S are the arrows in Q.
- ▶ The shaded regions in the interior of S are the chordless cycles of Q.
- ▶ The shaded regions at the boundary of S are the boundary arrows of Q.
- The white regions have an even number of vertices and exactly one or two of them lie on the boundary of S.
- ▶ The number of vertices of S is even. We label them clockwise $1, 2, 3, \dots, 2N$.
- ▶ Each line $\rho(x), x \in Q_0$ of the checkerboard pattern is a 2-diagonal, i.e. it connects an even vertex to an odd vertex.

Orientation and degree

Let $Diag(S) = \{ oriented \ 2-diagonals \ of \ S \}$ where the orientation of the 2-diagonal is in the direction from the odd vertex to the even vertex.

Each $\gamma \in \text{Diag}(S)$ crosses several checkerboard lines $\rho(x), x \in Q_0$. The **degree** of the crossing between γ and $\rho(x)$ is

 $\left\{ \begin{array}{ll} 0 & \text{if the crossing is from left to right;} \\ 1 & \text{if the crossing is from right to left.} \end{array} \right.$

We define

$$P_0(\gamma) = \bigoplus P(x)$$
 sum over x s.t. γ crosses $\rho(x)$ in degree 0;

$$P_1(\gamma) = \bigoplus P(x)$$
 sum over x s.t. γ crosses $\rho(x)$ in degree 1.

2-diagonals ⇔ syzygies

Conjecture

For each 2-diagonal γ in $\mathcal S$ there exists a morphism

$$f_{\gamma}\colon P_1(\gamma)\to P_0(\gamma)$$

producing an equivalence of categories

$$\begin{array}{cccc} F \colon \mathsf{Diag}(\mathcal{S}) & \to & \underline{\mathsf{CMP}} \; B \\ & \gamma & \mapsto & \mathsf{coker} \, f_\gamma =: M_\gamma & \mathsf{such \; that} \\ & \rho(i) & \leftrightarrow & \mathsf{rad} \; P(i) \\ & R & \leftrightarrow & \Omega \\ & R^2 & \leftrightarrow & \tau^{-1} = \mathsf{Auslander-Reiten \; translation} \\ & 2\text{-pivots} & \leftrightarrow & \mathsf{irreducible \; morphisms} \end{array}$$

where R is the clockwise rotation by $2\pi/2N$.

2-pivots

Figure: γ' is the 2-pivot of γ fixing the endpoint a and γ'' is the 2-pivot of γ fixing the endpoint b.

Corollary

Assuming the conjecture holds, the size 2N of $\mathcal S$ is a derived invariant for the algebra $\mathcal B$ which can be computed combinatorially from the quiver $\mathcal Q$ of $\mathcal B$.

Main Result

Theorem (S.-Serhiyenko)

The conjecture holds if each chordless cycle is of length three.

Remark

- 1. The difficult part is to find the correct definition of $f_{\gamma} \colon P_1(\gamma) \to P_0(\gamma)$.
- 2. f_{γ} is not generic in general.
- 3. $M_{\gamma} = \operatorname{coker} f_{\gamma}$ is rigid, \rightsquigarrow determined by its *g*-vector

Idea of the proof

- ▶ Define f_{γ} .
- ▶ Show that $f_{\gamma} \circ f_{R(\gamma)}$ is exact. Thus $\Omega M_{\gamma} = M_{R(\gamma)}$
- ▶ Show that M_{γ} is indecomposable and independent of the choice of representative in the homotopy class of γ .
- ▶ Show that 2-pivots are irreducible morphisms.
- Show that there are no other syzygies.
 - ▶ 2-pivot meshes are Auslander-Reiten triangles. \rightsquigarrow Diag(S) gives a finite component of the AR quiver of CMP B.
 - Show that there are no other components.

Corollary

Two of our algebras B, B' satisfy $\underline{\mathsf{CMP}}\ B \cong \underline{\mathsf{CMP}}\ B'$ if and only if the checkerboard polygons $\mathcal{S}, \mathcal{S}'$ have the same number of vertices.

$$\mathsf{CMP}\left(\begin{array}{c} 2 \\ 1 & & \\ \end{array} \right) \cong \mathsf{CMP}\left(\begin{array}{c} 2 \\ 1 & & \\ \end{array} \right)$$

Current and future work

- General case, no restriction on the length of chordless cycles.
- Remove the condition
 - dual graph is a tree
 - ▶ not connected ✓
 - ▶ with cycles ~> more complicated surfaces than polygons
 - ▶ faces of *Q* are chordless cycles
 - Q planar
 - Q without parallel arrows
- Study the effect of mutations on the checkerboard polygon
- Study tilting theory,
 - from $Diag(S) = \underline{CMP} B$ to mod B

$\mathsf{CMP}\ B$

CMP B

