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Overview

Today’s talk

• Propose to study exact-categorical properties (simple
objects, the Jordan-Hölder property) of torsion-free (or
torsion) classes.

• Exhibit such study for preprojective algebra (and path
algebra) using root system.
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Outline

Simple objects and the Jordan-Hölder Property

Torsion-free classes over Preprojective algebras

Idea of Proof
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Simple objects and the
Jordan-Hölder Property



Setting

Throughout this talk,
• Λ: f.d. algebra over a field.
• mod Λ: the cat. of f.g. right Λ-modules.

Definition
E is an exact category
if E is an extension-closed subcat. of mod Λ, i.e.

0→ L→ M → N → 0

s.e.s. in mod Λ with L;N ∈ E impliesM ∈ E.
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Proj, inj, simples for exact cat.

For an exact category E ⊂ mod Λ,
a short exact sequence in E is a s.e.s. in mod Λ

0→ L→ M → N → 0

with L;M;N ∈ E.
Definition
Let E be an exact category.
• P ∈ E is projective in E if every P → N lifts to P → M.
• I ∈ E is injective in E if every L→ I lifts toM → I.
• S ∈ E is simple in E if for every s.e.s. 0→ L→ S → N → 0

in E , we have L = 0 or N = 0.
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Motivation

Let F be a funct-fin. torsion-free class in mod Λ.
By Adachi-Iyama-Reiten, F = SubU for a s.fi−-tilt. U.

• Projs in F are add(Λ= annF).
• Injs in F are addU.

This implies #{indec. proj. in F} = #{indec. inj. in F}.
My Motivation is to study
simF , the set of isoclasses of simples in F ,
for a given torsion-free class F in mod Λ.
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The Jordan-Hölder Property (JHP)

E: an exact cat.
Definition
For an objectM ∈ E , a composition series ofM in E is
a sequence of submodules

0 = M0 < M1 < · · · < Mm = M

satisfyingMi=Mi−1 ∈ sim E for each i .
Definition
E satisfies the Jordan-Hölder Property (JHP)
if for everyM ∈ E , all comp. ser. ofM in E are equivalent, i.e.
E-composition factors are unique up to perm.
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Criterion for (JHP)

Theorem (E)
For a funct-fin. torsion-free class F in mod Λ, TFAE:
1. F satisfies (JHP).
2. #{indec. proj. objects in F} = # simF .

In general, #{indec. proj. objects in F} ≤ # simF ≤ ∞.
Example
Every torsion-free class over a Nakayama alg. satisfies (JHP).
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Example

Let Λ be path alg. of 1→ 2← 3:
1

1
2

1 3
22

3
2

3

F := add{gray}.
Projectives in F 1

2; 2; 3
2

Simples in F 1; 2; 3

(JHP)
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Example

Let Λ be path alg. of 1→ 2← 3:
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1
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Example

Let Λ be path alg. of 1→ 2← 3:
1

1
2

1 3
22

3
2

3

F := add{gray}.
Projectives in F 1

2; 2; 3
2

Simples in F 2; 1
2;

3
2;

1 3
2

(JHP)
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Torsion-free classes over
Preprojective algebras



Notation and the motivating theorem

From now on, we assume
• Q: a Dynkin quiver of type ADE.
• Φ: the root system of the same type as Q.
• Φ+: the set of positive roots in Φ.
• ¸u : the simple root corresponding to u ∈ Q0.
• W : the Weyl group of Φ, generated by su := s¸u for u ∈ Q0.
• Π: a preprojective algebra of Q (defined later).
• torf Λ: the poset of torsion-free classes (torfs) in mod Λ.

Goal
Describe simples of torf over Π and kQ by usingW and Φ!
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Preprojective algebra

Definition
A preprojective algebra Π of Q is defined by

Π := kQ

,0@ X
a∈Q1

aa∗ − a∗a

1A :

where Q is a double quiver and a∗ is an added arrow.
Example
Q : 1→ 2← 3
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Some properties

Proposition
Π: preproj. alg. of Q.

1. Π is f.d. self-injective alg (for Dynkin case).
2. ∃ natural surjection Π“ kQ, thus mod kQ ⊂ modΠ.
3. Π only depends on the underlying graph of Q, hence on Φ,

and doesn’t depend on the orientation.
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Bricks and simples

Let Λ be a f.d. alg and F ∈ torf Λ.
Proposition
Every simple objectM in F is a brick,
i.e. every non-zero endomorphism ofM is an isom.

Proof.
Let f : M → M. Then we have s.e.s.

0→ ker f → M → Im f → 0

in F since F is closed under submodules.
Thus either ker f = 0 ( f : isom) or Im f = 0 ( f = 0).
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Generalized Gabriel’s theorem

Define dimM :=
P
u∈Q0

(dimMu)¸u forM ∈ modΠ.
Proposition (Iyama-Reading-Reiten-Thomas)
For every brick B ∈ modΠ, we have dimB ∈ Φ+.

Example
Q : 1fl 2.

¸1

¸1 + ¸2¸2
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Torsion-free classes over preproj. alg.

Definition (Buan-Iyama-Reiten-Scott)
For w ∈ W , take a reduced expression w = su1su2 · · · sul ,and define F(w) := SubΠ=I(w)⊂ modΠ, where

I(w) := Iul · · · Iu2Iu1 ;
Iu := Π(1− eu)Π:

Theorem (Mizuno)
w 7→ F(w) gives a bijection betweenW and torf Π.

Remark
F(w) = Cw categorifies the cluster structure of the unipotent
cell in the algebraic group [Geiss-Leclerc-Schröer].
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Example

Q : 1fl 2.
s121 = s212 modΠ

s12 s21 F(s12) F(s21)

s1 s2 F(s1) F(s2)

e 0

Hasse quivers of
right weak order (W;≤R), and torf Π.
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Inversion set and torsion-free class

Definition
For w ∈ W , its inversion set is defined by

inv(w) := {˛ ∈ Φ+ |w−1(˛) is negative}:

w1 ≤R w2 if and only if inv(w1) ⊆ inv(w2)

Proposition
For every brick B ∈ F(w), we have dimB ∈ inv(w).
 F(w) is a categorification of inv(w)
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Example

Q : 1fl 2, Φ+ = {¸1; ¸2; ˛ = ¸1 + ¸2}.
s121 Φ+ modΠ

s12 s21 {¸1; ˛} {¸2; ˛} F(s12) F(s21)

s1 s2 {¸1} {¸2} F(s1) F(s2)

e ? 0

⊃⊃

⊃ ⊃

⊃ ⊃
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Bruhat inversions

Definition
For w ∈ W , its Bruhat inversion is ˛ ∈ inv(w) which can’t be
written as a sum of other inversions of w .
Binv(w): the set of Bruhat inversions of w .
• For w0: longest element, inv(w0) = Φ+ and

Binv(w0) = {simple roots}.
• Bruhat inversions of w : “simple roots” inside inv(w).
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Main Results

Theorem (E)
For a preprojective algebra Π and w ∈ W , we have a bijection

brickF(w) inv(w)

simF(w) Binv(w)

dim

∼

⊃ ⊃

Corollary
F(w) satisfies (JHP) if and only if

# Binv(w) = # supp(w):

Here supp(w) := {u ∈ Q0 | su appears in red. exp. of w}.
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Path algebra case

For w ∈ W , define
FQ(w) := F(w) ∩mod kQ ⊂ mod kQ:

Then w 7→ FQ(w) induces a bij. between cQ-sortable elements
inW and torfs in mod kQ by Ingalls-Thomas.
Then the same result holds: we have a bij
dim: simFQ(w)

∼−→ Binv(w).
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Compute inversions

Proposition
Fix a red. exp. w = su1 · · · sul ∈ W , put

˛i = su1 · · · sui−1(¸ui )

for i = 1; 2; : : : ; l . Then inv(w) = {˛1; : : : ; ˛l}.

Example
w = s21323 = s2s1s3s2s3 for Q : 1fl 2fl 3. Then

˛1 = ¸2; ˛2 = s2(¸1) = ¸1 + ¸2;

˛3 = s21(¸3) = ¸2 + ¸3; ˛4 = s213(¸2) = ¸1 + ¸2 + ¸3;

˛5 = s2132(¸3) = ¸1:
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Compute Bruhat inversions

Proposition
Fix a red. exp. w = su1 · · · sul ∈ W and ˛i as before. Then TFAE:

1. ˛i ∈ Binv(w).
2. su1 · · ·csui · · · sul (sui omitted) is reduced.

Example
w = s21323 for Q : 1fl 2fl 3. Then

˛1 = ¸2; ˛2 = ¸1 + ¸2; ˛3 = ¸2 + ¸3;

˛4 = ¸1 + ¸2 + ¸3; ˛5 = ¸1:

2̂1323:red, 21̂323:not, 213̂23:red, 2132̂3:not, 21323̂:red.
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Example

Let Λ be path alg. of 1→ 2← 3, w = s21323.
1

1
2

1 3
22

3
2

3

FQ(w) = add{gray}.

2̂1323:red, 21̂323:not, 213̂23:red, 2132̂3:not, 21323̂:red.
2 1

2
3
2

1 3
2 1
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Example for path alg. case

Let Λ be path alg. of 1→ 2← 3, w = s2132.
1

1
2

1 3
22

3
2

3

FQ(w) = add{gray}.

2̂132:red, 21̂32:red, 213̂2:red, 2132̂:red.
2 1

2
3
2

1 3
2
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Idea of Proof



Brick sequence associated to red. exp.

From now on, fix one red. exp w = su1su2 · · · sul .
By this data, we have the following chain in torf Π.

0 = F(e)← F(su1)← F(su1su2)← · · · ← F(su1 · · · sul ) = F(w)

Proposition (Demonet-Iyama-Reading-Reiten-Thomas)
For an arrow G ← F in torf Λ, there’s a brick B such that
F = Filt{G ∪ {B}} (called brick label of this arrow).

Define B1; B2; : : : ; Bl as brick labels of above arrows.
Corollary
F(w) = Filt{B1; B2; : : : ; Bl}, hence simF(w) ⊂ {B1; : : : ; Bl}.
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Brick sequence and inversion sets

Proposition (Amiot-Iyama-Reiten-Todorov, layer module)
dimBi = ˛i , where ˛i = su1 · · · sui−1(¸ui ) as before. Thus

inv(w) = {dimB1; : : : ; dimBl}:

simF(w) {B1; : : : ; Bl}

Binv(w) inv(w) = {˛1; : : : ; ˛l}

⊂

dim∼=

⊂

Hence suffices to show TFAE:
1. Bi is non-simple in F(w).
2. ˛i = dimBi is a non-Bruhat inversion of w .
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1. Bi is non-simple in F(w).
2. ˛i = dimBi is a non-Bruhat inversion of w .

(1)⇒ (2): Easy by dim.
(2)⇒ (1): We use some geometrical configuration of
non-Bruhat inversions:

˛j

˛i = ˛j + ˛k˛k

and a non-zero non-injection f : Bi → Bj , which gives
0→ ker f → Bi → Im f → 0;

hence Bi is non-simple.
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Brick sequences for several red. exp.

w = s21323

s2123 s2132

s123 s212 s213

s12 s21 s23

s1 s2

e

3
2 1

3
2

1

2 1 3
2

3
2

1 2 1
1
2

3
2

2
1

1
2 3

2

1 2
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Conjectures

Conjecture
If dimBi is non-Bruhat inv. of w , then there’s s.e.s.

0→ Bj → Bi → Bk → 0

with for some j; k .
This is (almost) equivalent to:
Conjecture
TFAE for a brick B ∈ F(w).
• B is simple in F(w).
• B appears as a label in every path from F(w) to 0.
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