Simple objects in torsion-free classes over preprojective algebras of Dynkin type

Haruhisa Enomoto

18 June 2020, FD seminar (online)

Graduate School of Mathematics, Nagoya University

Today's talk

- Propose to study exact-categorical properties (simple objects, the Jordan-Hölder property) of torsion-free (or torsion) classes.
- Exhibit such study for preprojective algebra (and path algebra) using root system.

Simple objects and the Jordan-Hölder Property

Torsion-free classes over Preprojective algebras

Idea of Proof

Simple objects and the Jordan-Hölder Property

Setting

Throughout this talk,

- A: f.d. algebra over a field.
- mod Λ : the cat. of f.g. right Λ -modules.

Definition

 \mathcal{E} is an exact category

if \mathcal{E} is an extension-closed subcat. of mod Λ , i.e.

$$0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$$

s.e.s. in mod Λ with $L, N \in \mathcal{E}$ implies $M \in \mathcal{E}$.

Proj, inj, simples for exact cat.

For an exact category $\mathcal{E} \subset \mod \Lambda$, a short exact sequence in \mathcal{E} is a s.e.s. in mod Λ

 $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$

with *L*, *M*, $N \in \mathcal{E}$.

Definition

Let $\ensuremath{\mathcal{E}}$ be an exact category.

- $P \in \mathcal{E}$ is projective in \mathcal{E} if every $P \to N$ lifts to $P \to M$.
- $I \in \mathcal{E}$ is injective in \mathcal{E} if every $L \to I$ lifts to $M \to I$.
- $S \in \mathcal{E}$ is simple in \mathcal{E} if for every s.e.s. $0 \to L \to S \to N \to 0$ in \mathcal{E} , we have L = 0 or N = 0.

Let \mathcal{F} be a funct-fin. torsion-free class in mod Λ . By Adachi-Iyama-Reiten, $\mathcal{F} = \operatorname{Sub} U$ for a s. τ^- -tilt. U.

- Projs in \mathcal{F} are $\operatorname{add}(\Lambda/\operatorname{ann}\mathcal{F})$.
- Injs in \mathcal{F} are add U.

This implies $\#\{\text{indec. proj. in } \mathcal{F}\} = \#\{\text{indec. inj. in } \mathcal{F}\}.$

My Motivation is to study

sim \mathcal{F} , the set of isoclasses of simples in \mathcal{F} , for a given torsion-free class \mathcal{F} in mod Λ .

The Jordan-Hölder Property (JHP)

 \mathcal{E} : an exact cat.

Definition

For an object $M \in \mathcal{E}$, a composition series of M in \mathcal{E} is a sequence of submodules

$$0 = M_0 < M_1 < \cdots < M_m = M$$

satisfying $M_i/M_{i-1} \in sim \mathcal{E}$ for each *i*.

Definition

 \mathcal{E} satisfies the Jordan-Hölder Property (JHP)

if for every $M \in \mathcal{E}$, all comp. ser. of M in \mathcal{E} are equivalent, i.e.

 \mathcal{E} -composition factors are unique up to perm.

Theorem (E)

For a funct-fin. torsion-free class \mathcal{F} in mod Λ , TFAE:

- **1.** \mathcal{F} satisfies (JHP).
- **2.** #{indec. proj. objects in \mathcal{F} } = $\# \operatorname{sim} \mathcal{F}$.

In general, $\#\{\text{indec. proj. objects in } \mathcal{F}\} \le \# \operatorname{sim} \mathcal{F} \le \infty$.

Example

Every torsion-free class over a Nakayama alg. satisfies (JHP).

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3$:

 $\mathcal{F}:=\mathsf{add}\{\mathsf{gray}\}.$

Projectives in ${\cal F}$	1 2,	2,	3 2
Simples in ${\mathcal F}$	1,	2,	3
(JHP)			

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3$:

 $\mathcal{F}:=\mathsf{add}\{\mathsf{gray}\}.$

Projectives in ${\cal F}$	1 2,	2,	3 2
Simples in ${\mathcal F}$	1,	2,	3 2
(JHP)			

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3$:

 $\mathcal{F} := \mathsf{add}\{\mathsf{gray}\}.$

Projectives in ${\cal F}$		1 2'	2,	3 2
Simples in ${\mathcal F}$	2,	1 2'	3 2'	13 2
(JHP)				

Torsion-free classes over Preprojective algebras

From now on, we assume

- Q: a Dynkin quiver of type ADE.
- Φ : the root system of the same type as Q.
- Φ^+ : the set of positive roots in Φ .
- α_u : the simple root corresponding to $u \in Q_0$.
- *W*: the Weyl group of Φ , generated by $s_u := s_{\alpha_u}$ for $u \in Q_0$.
- Π: a preprojective algebra of *Q* (defined later).
- torf Λ : the poset of torsion-free classes (torfs) in mod Λ .

Goal

Describe simples of torf over Π and kQ by using W and Φ !

Definition

A preprojective algebra Π of Q is defined by

$$\Pi := \left. k \overline{Q} \right/ \left(\sum_{a \in Q_1} a a^* - a^* a
ight)$$

where \overline{Q} is a double quiver and a^* is an added arrow.

Example

 $Q: 1
ightarrow 2 \leftarrow 3$

Proposition

- Π : preproj. alg. of Q.
 - 1. Π is f.d. self-injective alg (for Dynkin case).
- 2. \exists natural surjection $\Pi \twoheadrightarrow kQ$, thus mod $kQ \subset \mod \Pi$.
- 3. Π only depends on the underlying graph of Q, hence on Φ , and doesn't depend on the orientation.

Let Λ be a f.d. alg and $\mathcal{F} \in \operatorname{torf} \Lambda$.

Proposition

Every simple object M in \mathcal{F} is a **brick**,

i.e. every non-zero endomorphism of M is an isom.

Proof.

Let $f: M \to M$. Then we have s.e.s.

 $0 \rightarrow \ker f \rightarrow M \rightarrow \operatorname{Im} f \rightarrow 0$

in \mathcal{F} since \mathcal{F} is closed under submodules. Thus either ker f = 0 ($\rightsquigarrow f$: isom) or Im f = 0 ($\rightsquigarrow f = 0$). Define $\underline{\dim} M := \sum_{u \in Q_0} (\dim M_u) \alpha_u$ for $M \in \mod \Pi$.

Proposition (lyama-Reading-Reiten-Thomas)

For every brick $B \in \text{mod }\Pi$, we have $\underline{\dim} B \in \Phi^+$.

Example

 \overline{Q} : 1 \rightleftharpoons 2.

Torsion-free classes over preproj. alg.

Definition (Buan-Iyama-Reiten-Scott)

For $w \in W$, take a reduced expression $w = s_{u_1}s_{u_2}\cdots s_{u_l}$, and define $\mathcal{F}(w) := \operatorname{Sub} \Pi/I(w) \subset \operatorname{mod} \Pi$, where

$$egin{aligned} I(w) &:= I_{u_l} \cdots I_{u_2} I_{u_1}, \ & I_u &:= \Pi(1-e_u) \Pi. \end{aligned}$$

Theorem (Mizuno)

 $w \mapsto \mathcal{F}(w)$ gives a bijection between W and torf Π .

Remark

 $\mathcal{F}(w) = \mathcal{C}_w$ categorifies the cluster structure of the unipotent cell in the algebraic group [Geiss-Leclerc-Schröer].

 \overline{Q} : 1 \rightleftharpoons 2.

Hasse quivers of right weak order (W, \leq_R) , and torf Π .

Definition

For $w \in W$, its inversion set is defined by

$$\operatorname{inv}(w) := \{\beta \in \Phi^+ \mid w^{-1}(\beta) \text{ is negative}\}.$$

 $w_1 \leq_R w_2$ if and only if $inv(w_1) \subseteq inv(w_2)$

Proposition

For every brick $B \in \mathcal{F}(w)$, we have $\underline{\dim} B \in \mathrm{inv}(w)$. $\rightsquigarrow \mathcal{F}(w)$ is a categorification of $\mathrm{inv}(w)$

$$\overline{Q}: 1 \rightleftharpoons 2$$
, $\Phi^+ = \{\alpha_1, \alpha_2, \beta = \alpha_1 + \alpha_2\}.$

Definition

For $w \in W$, its Bruhat inversion is $\beta \in inv(w)$ which can't be written as a sum of other inversions of w. Binv(w): the set of Bruhat inversions of w.

- For w_0 : longest element, $inv(w_0) = \Phi^+$ and Binv $(w_0) = \{simple roots\}.$
- Bruhat inversions of w: "simple roots" inside inv(w).

Main Results

Theorem (E)

For a preprojective algebra Π and $w \in W$, we have a bijection

$$egin{array}{ccc} \mathsf{brick} \ \mathcal{F}(w) & \stackrel{\operatorname{\underline{dim}}}{\longrightarrow} & \mathsf{inv}(w) \ & & \cup & & \cup \ \mathsf{sim} \ \mathcal{F}(w) & \stackrel{\sim}{\longrightarrow} & \mathsf{Binv}(w) \end{array}$$

Corollary

 $\mathcal{F}(w)$ satisfies (JHP) if and only if

$$\#\operatorname{Binv}(w) = \#\operatorname{supp}(w).$$

Here supp $(w) := \{ u \in Q_0 \mid s_u \text{ appears in red. exp. of } w \}.$

For $w \in W$, define

$$\mathcal{F}_Q(w) := \mathcal{F}(w) \cap \operatorname{mod} kQ \subset \operatorname{mod} kQ.$$

Then $w \mapsto \mathcal{F}_Q(w)$ induces a bij. between c_Q -sortable elements in W and torfs in mod kQ by Ingalls-Thomas.

Then the same result holds: we have a bij $\underline{\dim}: \ \sin \mathcal{F}_Q(w) \xrightarrow{\sim} \operatorname{Binv}(w).$

Compute inversions

Proposition

Fix a red. exp. $w = s_{u_1} \cdots s_{u_l} \in W$, put

$$\beta_i = s_{u_1} \cdots s_{u_{i-1}}(\alpha_{u_i})$$

for
$$i = 1, 2, ..., l$$
. Then $inv(w) = \{\beta_1, ..., \beta_l\}$.

Example

 $w = s_{21323} = s_2 s_1 s_3 s_2 s_3$ for $\overline{Q} : 1 \rightleftharpoons 2 \rightleftharpoons 3$. Then

$$egin{aligned} η_1 = lpha_2, η_2 = s_2(lpha_1) = lpha_1 + lpha_2, \ η_3 = s_{21}(lpha_3) = lpha_2 + lpha_3, η_4 = s_{213}(lpha_2) = lpha_1 + lpha_2 + lpha_3, \ η_5 = s_{2132}(lpha_3) = lpha_1. \end{aligned}$$

Compute Bruhat inversions

Proposition

Fix a red. exp. $w = s_{u_1} \cdots s_{u_l} \in W$ and β_i as before. Then TFAE:

1.
$$\beta_i \in \text{Binv}(w)$$
.
2. $s_{u_1} \cdots \widehat{s_{u_i}} \cdots s_{u_l}$ (s_{u_i} omitted) is reduced.

Example

 $w = s_{21323}$ for $\overline{Q} : 1 \rightleftharpoons 2 \rightleftharpoons 3$. Then

$$egin{aligned} eta_1 &= lpha_2, & eta_2 &= lpha_1 + lpha_2, & eta_3 &= lpha_2 + lpha_3, \ eta_4 &= lpha_1 + lpha_2 + lpha_3, & eta_5 &= lpha_1. \end{aligned}$$

21323:red, 21323:not, 21323:red, 21323:not, 21323:red.

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3$, $w = s_{21323}$.

 $\mathcal{F}_Q(w) = \mathsf{add}\{\mathsf{gray}\}.$

21323:red, 21323:not, 21323:red, 21323:not, 21323:red. 2 1/2 3/2 1/3 1

Example for path alg. case

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3$, $w = s_{2132}$.

 $\mathcal{F}_Q(w) = \mathsf{add}\{\mathsf{gray}\}.$

2132:red, 2132:red, 2132:red, 2132:red. $_2$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{13}{2}$

From now on, fix one red. exp $w = s_{u_1}s_{u_2}\cdots s_{u_l}$.

By this data, we have the following chain in torf Π .

$$0 = \mathcal{F}(e) \leftarrow \mathcal{F}(s_{u_1}) \leftarrow \mathcal{F}(s_{u_1}s_{u_2}) \leftarrow \cdots \leftarrow \mathcal{F}(s_{u_1}\cdots s_{u_l}) = \mathcal{F}(w)$$

Proposition (Demonet-Iyama-Reading-Reiten-Thomas) For an arrow $\mathcal{G} \leftarrow \mathcal{F}$ in torf Λ , there's a brick B such that $\mathcal{F} = \operatorname{Filt}{\mathcal{G} \cup {B}}$ (called brick label of this arrow).

Define B_1, B_2, \ldots, B_l as brick labels of above arrows.

Corollary

 $\mathcal{F}(w) = \operatorname{Filt}\{B_1, B_2, \ldots, B_l\}, \text{ hence sim } \mathcal{F}(w) \subset \{B_1, \ldots, B_l\}.$

Brick sequence and inversion sets

Proposition (Amiot-Iyama-Reiten-Todorov, layer module) $\underline{\dim} B_i = \beta_i$, where $\beta_i = s_{u_1} \cdots s_{u_{i-1}}(\alpha_{u_i})$ as before. Thus $\operatorname{inv}(w) = \{\underline{\dim} B_1, \dots, \underline{\dim} B_l\}.$

$$sim \mathcal{F}(w) \quad \subset \quad \{B_1, \dots, B_l\} \\
 \downarrow \qquad \simeq \downarrow \underline{\dim} \\
 Binv(w) \quad \subset \quad inv(w) = \{\beta_1, \dots, \beta_l\}$$

Hence suffices to show TFAE:

- 1. B_i is non-simple in $\mathcal{F}(w)$.
- 2. $\beta_i = \underline{\dim} B_i$ is a non-Bruhat inversion of *w*.

- 1. B_i is non-simple in $\mathcal{F}(w)$.
- 2. $\beta_i = \underline{\dim} B_i$ is a non-Bruhat inversion of *w*.

(1) \Rightarrow (2): Easy by dim.

(2) \Rightarrow (1): We use some geometrical configuration of non-Bruhat inversions:

and a non-zero non-injection $f: B_i \rightarrow B_j$, which gives

$$0 \rightarrow \ker f \rightarrow B_i \rightarrow \operatorname{Im} f \rightarrow 0$$
,

hence B_i is non-simple.

Brick sequences for several red. exp.

29

Conjectures

Conjecture

If $\underline{\dim} B_i$ is non-Bruhat inv. of w, then there's s.e.s.

$$0 \rightarrow B_j \rightarrow B_i \rightarrow B_k \rightarrow 0$$

with for some *j*, *k*.

This is (almost) equivalent to:

Conjecture

TFAE for a brick $B \in \mathcal{F}(w)$.

- *B* is simple in $\mathcal{F}(w)$.
- *B* appears as a label in every path from $\mathcal{F}(w)$ to 0.