Simple objects in torsion-free classes over preprojective algebras of Dynkin type

Haruhisa Enomoto
18 June 2020, FD seminar (online)
Graduate School of Mathematics, Nagoya University

Overview

Today's talk

- Propose to study exact-categorical properties (simple objects, the Jordan-Hölder property) of torsion-free (or torsion) classes.
- Exhibit such study for preprojective algebra (and path algebra) using root system.

Outline

Simple objects and the Jordan-Hölder Property

Torsion-free classes over Preprojective algebras

Idea of Proof

Simple objects and the Jordan-Hölder Property

Setting

Throughout this talk,

- $\wedge:$ f.d. algebra over a field.
$\cdot \bmod \wedge$: the cat. of f.g. right Λ-modules.

Definition

\mathcal{E} is an exact category
if \mathcal{E} is an extension-closed subcat. of $\bmod \Lambda$, i.e.

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

s.e.s. in $\bmod \Lambda$ with $L, N \in \mathcal{E}$ implies $M \in \mathcal{E}$.

Proj, inj, simples for exact cat.

For an exact category $\mathcal{E} \subset \bmod \Lambda$, a short exact sequence in \mathcal{E} is a s.e.s. in $\bmod \Lambda$

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

with $L, M, N \in \mathcal{E}$.

Definition

Let \mathcal{E} be an exact category.

- $P \in \mathcal{E}$ is projective in \mathcal{E} if every $P \rightarrow N$ lifts to $P \rightarrow M$.
- $I \in \mathcal{E}$ is injective in \mathcal{E} if every $L \rightarrow I$ lifts to $M \rightarrow I$.
- $S \in \mathcal{E}$ is simple in \mathcal{E} if for every s.e.s. $0 \rightarrow L \rightarrow S \rightarrow N \rightarrow 0$ in \mathcal{E}, we have $L=0$ or $N=0$.

Motivation

Let \mathcal{F} be a funct-fin. torsion-free class in $\bmod \Lambda$.
By Adachi-lyama-Reiten, $\mathcal{F}=\operatorname{Sub} U$ for a s. τ^{-}-tilt. U.

- Projs in \mathcal{F} are $\operatorname{add}(\Lambda / \operatorname{ann} \mathcal{F})$.
- Injs in \mathcal{F} are add U.

This implies $\#\{$ indec. proj. in $\mathcal{F}\}=\#\{$ indec. inj. in $\mathcal{F}\}$.

My Motivation is to study

$\operatorname{sim} \mathcal{F}$, the set of isoclasses of simples in \mathcal{F},
for a given torsion-free class \mathcal{F} in $\bmod \Lambda$.

The Jordan-Hölder Property (JHP)

\mathcal{E} : an exact cat.

Definition

For an object $M \in \mathcal{E}$, a composition series of M in \mathcal{E} is a sequence of submodules

$$
0=M_{0}<M_{1}<\cdots<M_{m}=M
$$

satisfying $M_{i} / M_{i-1} \in \operatorname{sim} \mathcal{E}$ for each i.

Definition

\mathcal{E} satisfies the Jordan-Hölder Property (JHP)
if for every $M \in \mathcal{E}$, all comp. ser. of M in \mathcal{E} are equivalent, i.e.
\mathcal{E}-composition factors are unique up to perm.

Criterion for (JHP)

Theorem (E)

For a funct-fin. torsion-free class \mathcal{F} in $\bmod \Lambda$, TFAE:

1. \mathcal{F} satisfies (JHP).
2. $\#\{$ indec. proj. objects in $\mathcal{F}\}=\# \operatorname{sim} \mathcal{F}$.

In general, $\#\{$ indec. proj. objects in $\mathcal{F}\} \leq \# \operatorname{sim} \mathcal{F} \leq \infty$.

Example

Every torsion-free class over a Nakayama alg. satisfies (JHP).

Example

Let \wedge be path alg. of $1 \rightarrow 2 \leftarrow 3$:

$\mathcal{F}:=\operatorname{add}\{$ gray $\}$.

Projectives in \mathcal{F}	$\frac{1}{2}$,	2,	3
Simples in \mathcal{F}	1,	2,	3
(JHP)			

Example

Let \wedge be path alg. of $1 \rightarrow 2 \leftarrow 3$:

$\mathcal{F}:=\operatorname{add}\{$ gray $\}$.

Projectives in \mathcal{F}	1 2	2,	3
Simples in \mathcal{F}	1,	2,	3 2
(JHP)			

Example

Let \wedge be path alg. of $1 \rightarrow 2 \leftarrow 3$:

$$
\mathcal{F}:=\operatorname{add}\{\text { gray }\} .
$$

Projectives in \mathcal{F}		1	2,
2,	2,	2	
Simples in \mathcal{F}	2,	$\frac{1}{2}$,	3 2
(JHP)	$\underset{2}{13}$		

Torsion-free classes over

 Preprojective algebras
Notation and the motivating theorem

From now on, we assume

- Q: a Dynkin quiver of type ADE.
- ϕ : the root system of the same type as Q.
- Φ^{+}: the set of positive roots in Φ.
- α_{u} : the simple root corresponding to $u \in Q_{0}$.
- W: the Weyl group of Φ, generated by $s_{u}:=s_{\alpha_{u}}$ for $u \in Q_{0}$.
- Π : a preprojective algebra of Q (defined later).
- torf Λ : the poset of torsion-free classes (torfs) in $\bmod \Lambda$.

Goal

Describe simples of torf over Π and $k Q$ by using W and Φ !

Preprojective algebra

Definition

A preprojective algebra Π of Q is defined by

$$
\Pi:=k \bar{Q} /\left(\sum_{a \in Q_{1}} a a^{*}-a^{*} a\right) .
$$

where \bar{Q} is a double quiver and a^{*} is an added arrow.

Example

$Q: 1 \rightarrow 2 \leftarrow 3$

Some properties

Proposition

I: preproj. alg. of Q.

1. Π is f.d. self-injective alg (for Dynkin case).
2. \exists natural surjection $\Pi \rightarrow k Q$, thus $\bmod k Q \subset \bmod \Pi$.
3. Π only depends on the underlying graph of Q, hence on Φ, and doesn't depend on the orientation.

Bricks and simples

Let Λ be a f.d. alg and $\mathcal{F} \in \operatorname{torf} \Lambda$.

Proposition

Every simple object M in \mathcal{F} is a brick, i.e. every non-zero endomorphism of M is an isom.

Proof.

Let $f: M \rightarrow M$. Then we have s.e.s.

$$
0 \rightarrow \operatorname{ker} f \rightarrow M \rightarrow \operatorname{Im} f \rightarrow 0
$$

in \mathcal{F} since \mathcal{F} is closed under submodules.
Thus either $\operatorname{ker} f=0(\rightsquigarrow f$: isom $)$ or $\operatorname{Im} f=0(\rightsquigarrow f=0)$.

Generalized Gabriel's theorem

Define $\operatorname{dim} M:=\sum_{u \in Q_{0}}\left(\operatorname{dim} M_{u}\right) \alpha_{u}$ for $M \in \bmod \Pi$.

Proposition (lyama-Reading-Reiten-Thomas)

For every brick $B \in \bmod \Pi$, we have $\operatorname{dim} B \in \phi^{+}$.

Example

$$
\bar{Q}: 1 \rightleftarrows 2
$$

Torsion-free classes over preproj. alg.

Definition (Buan-Iyama-Reiten-Scott)

For $w \in W$, take a reduced expression $w=s_{u_{1}} s_{u_{2}} \cdots s_{u l}$, and define $\mathcal{F}(w):=\operatorname{Sub} \Pi / I(w) \subset \bmod \Pi$, where

$$
\begin{aligned}
I(w) & :=I_{u_{1}} \cdots I_{u_{2}} I_{u_{1}} \\
I_{u} & :=\Pi\left(1-e_{u}\right) \Pi .
\end{aligned}
$$

Theorem (Mizuno)

$w \mapsto \mathcal{F}(w)$ gives a bijection between W and torf Π.

Remark

$\mathcal{F}(w)=\mathcal{C}_{w}$ categorifies the cluster structure of the unipotent cell in the algebraic group [Geiss-Leclerc-Schröer].

Example

$$
\bar{Q}: 1 \rightleftarrows 2
$$

Hasse quivers of
right weak order $\left(W, \leq_{R}\right)$, and torf Π.

Inversion set and torsion-free class

Definition

For $w \in W$, its inversion set is defined by

$$
\operatorname{inv}(w):=\left\{\beta \in \Phi^{+} \mid w^{-1}(\beta) \text { is negative }\right\} .
$$

$w_{1} \leq_{R} w_{2}$ if and only if $\operatorname{inv}\left(w_{1}\right) \subseteq \operatorname{inv}\left(w_{2}\right)$

Proposition

For every brick $B \in \mathcal{F}(w)$, we have $\operatorname{dim} B \in \operatorname{inv}(w)$.
$\rightsquigarrow \mathcal{F}(w)$ is a categorification of $\operatorname{inv}(w)$

Example

$$
\bar{Q}: 1 \rightleftarrows 2, \quad \Phi^{+}=\left\{\alpha_{1}, \alpha_{2}, \beta=\alpha_{1}+\alpha_{2}\right\} .
$$

Bruhat inversions

Definition

For $w \in W$, its Bruhat inversion is $\beta \in \operatorname{inv}(w)$ which can't be written as a sum of other inversions of w.
$\operatorname{Binv}(w)$: the set of Bruhat inversions of w.

- For w_{0} : longest element, $\operatorname{inv}\left(w_{0}\right)=\Phi^{+}$and $\operatorname{Binv}\left(w_{0}\right)=\{$ simple roots $\}$.
- Bruhat inversions of w : "simple roots" inside inv($w)$.

Main Results

Theorem (E)

For a preprojective algebra Π and $w \in W$, we have a bijection

$$
\begin{aligned}
& \operatorname{brick} \mathcal{F}(w) \xrightarrow{\cup} \xrightarrow{\operatorname{dim}} \operatorname{inv}(w) \\
& \operatorname{sim} \mathcal{F}(w) \xrightarrow{\sim} \operatorname{Binv}(w)
\end{aligned}
$$

Corollary

$\mathcal{F}(w)$ satisfies (JHP) if and only if

$$
\# \operatorname{Binv}(w)=\# \operatorname{supp}(w)
$$

Here $\operatorname{supp}(w):=\left\{u \in Q_{0} \mid s_{u}\right.$ appears in red. exp. of $\left.w\right\}$.

Path algebra case

For $w \in W$, define

$$
\mathcal{F}_{Q}(w):=\mathcal{F}(w) \cap \bmod k Q \subset \bmod k Q .
$$

Then $w \mapsto \mathcal{F}_{Q}(w)$ induces a bij. between c_{Q}-sortable elements in W and torfs in $\bmod k Q$ by Ingalls-Thomas.

Then the same result holds: we have a bij $\underline{\operatorname{dim}}: \operatorname{sim} \mathcal{F}_{Q}(w) \xrightarrow{\sim} \operatorname{Binv}(w)$.

Compute inversions

Proposition

Fix a red. exp. $w=s_{u_{1}} \cdots s_{u_{I}} \in W$, put

$$
\beta_{i}=s_{u_{1}} \cdots s_{u_{i-1}}\left(\alpha_{u_{i}}\right)
$$

for $i=1,2, \ldots$, l. Then $\operatorname{inv}(w)=\left\{\beta_{1}, \ldots, \beta_{l}\right\}$.

Example

$w=s_{21323}=s_{2} s_{1} s_{3} s_{2} s_{3}$ for $\bar{Q}: 1 \rightleftarrows 2 \rightleftarrows 3$. Then

$$
\begin{array}{cc}
\beta_{1}=\alpha_{2}, & \beta_{2}=s_{2}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2} \\
\beta_{3}=s_{21}\left(\alpha_{3}\right)=\alpha_{2}+\alpha_{3}, & \beta_{4}=s_{213}\left(\alpha_{2}\right)=\alpha_{1}+\alpha_{2}+\alpha_{3} \\
\beta_{5}=s_{2132}\left(\alpha_{3}\right)=\alpha_{1} . &
\end{array}
$$

Compute Bruhat inversions

Proposition

Fix a red. exp. $w=s_{u_{1}} \cdots s_{u_{l}} \in W$ and β_{i} as before. Then TFAE:

1. $\beta_{i} \in \operatorname{Binv}(w)$.
2. $s_{U_{1}} \cdots \widehat{s_{u_{i}}} \cdots s_{u_{I}}\left(s_{u_{i}}\right.$ omitted) is reduced.

Example

$w=s_{21323}$ for $\bar{Q}: 1 \rightleftarrows 2 \rightleftarrows 3$. Then

$$
\begin{aligned}
& \beta_{1}=\alpha_{2}, \beta_{2}=\alpha_{1}+\alpha_{2}, \quad \beta_{3}=\alpha_{2}+\alpha_{3} \\
& \beta_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}, \quad \beta_{5}=\alpha_{1} .
\end{aligned}
$$

2̂1323:red, 2̂̂323:not, 213̂23:red, 2132̂3:not, 21323̂:red.

Example

Let Λ be path alg. of $1 \rightarrow 2 \leftarrow 3, w=s_{21323}$.

$$
\mathcal{F}_{Q}(w)=\operatorname{add}\{\text { gray }\}
$$

2̂1323:red, 2̂̂323:not, 213̂23:red, 2132̂3:not, 21323̂:red.
2
$\stackrel{1}{2}$
3
2
13
2
1

Example for path alg. case

Let \wedge be path alg. of $1 \rightarrow 2 \leftarrow 3, w=s_{2132}$.

$$
\mathcal{F}_{Q}(w)=\operatorname{add}\{\text { gray }\}
$$

2̂132:red, 21̂32:red, 213̂2:red, 2132̂:red.
2
$\frac{1}{2}$
3
2
13

Idea of Proof

Brick sequence associated to red. exp.

From now on, fix one red. $\exp w=s_{u_{1}} s_{u_{2}} \cdots s_{u_{l}}$.
By this data, we have the following chain in torf Π.

$$
0=\mathcal{F}(e) \leftarrow \mathcal{F}\left(s_{u_{1}}\right) \leftarrow \mathcal{F}\left(s_{u_{1}} s_{u_{2}}\right) \leftarrow \cdots \leftarrow \mathcal{F}\left(s_{u_{1}} \cdots s_{u_{l}}\right)=\mathcal{F}(w)
$$

Proposition (Demonet-Iyama-Reading-Reiten-Thomas)

For an arrow $\mathcal{G} \leftarrow \mathcal{F}$ in torf Λ, there's a brick B such that
$\mathcal{F}=$ Filt $\{\mathcal{G} \cup\{B\}\}$ (called brick label of this arrow).
Define $B_{1}, B_{2}, \ldots, B_{l}$ as brick labels of above arrows.

Corollary

$\mathcal{F}(w)=\operatorname{Filt}\left\{B_{1}, B_{2}, \ldots, B_{1}\right\}$, hence $\operatorname{sim} \mathcal{F}(w) \subset\left\{B_{1}, \ldots, B_{1}\right\}$.

Brick sequence and inversion sets

Proposition (Amiot-Iyama-Reiten-Todorov, layer module)

$\operatorname{dim} B_{i}=\beta_{i}$, where $\beta_{i}=s_{u_{1}} \cdots s_{u_{i-1}}\left(\alpha_{u_{i}}\right)$ as before. Thus

$$
\operatorname{inv}(w)=\left\{\operatorname{dim} B_{1}, \ldots, \operatorname{dim} B_{l}\right\} .
$$

Hence suffices to show TFAE:

1. B_{i} is non-simple in $\mathcal{F}(w)$.
2. $\beta_{i}=\underline{\operatorname{dim}} B_{i}$ is a non-Bruhat inversion of w.
3. B_{i} is non-simple in $\mathcal{F}(w)$.
4. $\beta_{i}=\operatorname{dim} B_{i}$ is a non-Bruhat inversion of w.
$(1) \Rightarrow(2)$: Easy by dim.
$(2) \Rightarrow(1)$: We use some geometrical configuration of non-Bruhat inversions:

$$
{ }^{\beta_{k}} \beta_{j}^{\beta_{i}=\beta_{j}+\beta_{k}}
$$

and a non-zero non-injection $f: B_{i} \rightarrow B_{j}$, which gives

$$
0 \rightarrow \operatorname{ker} f \rightarrow B_{i} \rightarrow \operatorname{Im} f \rightarrow 0,
$$

hence B_{i} is non-simple.

Brick sequences for several red. exp.

Conjectures

Conjecture

If $\operatorname{dim} B_{i}$ is non-Bruhat inv. of w, then there's s.e.s.

$$
0 \rightarrow B_{j} \rightarrow B_{i} \rightarrow B_{k} \rightarrow 0
$$

with for some j, k.
This is (almost) equivalent to:

Conjecture

TFAE for a brick $B \in \mathcal{F}(w)$.

- B is simple in $\mathcal{F}(w)$.
- B appears as a label in every path from $\mathcal{F}(w)$ to 0 .

