# **NTNU** | Norwegian University of Science and Technology

## THE QUIVER OF *n*-HEREDITARY ALGEBRAS

**FD** Seminar

Louis-Philippe Thibault based on joint work with Mads Hustad Sandøy

June 11, 2020

## **Higher Auslander-Reiten theory**

**Slogan**: Auslander–Reiten theory can be viewed as a 2-dimensional theory.

#### **Example: Auslander Correspondence**

There exists a bijection

where M is an additive generator of  $\Lambda$ .

#### *n*-Auslander Correspondence (Iyama 2007)

There exists a bijection

where M is an additive generator of C.

## *n*-hereditary algebras

- Many key features (e.g. AR-translate and AR-sequence) of Auslander–Reiten theory have natural generalisations in a higher dimensional setting.
- ▶ *n*-hereditary algebras arise from this paradigm. They enjoy properties analogous to hereditary algebras in the classical theory (n = 1).

Let  $\Lambda$  be a f.d. algebra of finite global dimension n and  $D := \text{Hom}_k(-, k)$ .

#### Nakayama functor

$$\nu := D\mathbf{R}\operatorname{Hom}_{\Lambda}(-,\Lambda) : D^{\mathsf{b}}(\operatorname{mod} \Lambda) \xrightarrow{\sim} D^{\mathsf{b}}(\operatorname{mod} \Lambda)$$
$$\nu^{-1} := \mathbf{R}\operatorname{Hom}_{\Lambda}(D\Lambda,-) : D^{\mathsf{b}}(\operatorname{mod} \Lambda) \xrightarrow{\sim} D^{\mathsf{b}}(\operatorname{mod} \Lambda)$$

This is a Serre functor on  $D^{b}(\text{mod }\Lambda)$ , that is,

$$\operatorname{Hom}_{\operatorname{D^b}(\operatorname{mod}\Lambda)}(X,Y)\cong D\operatorname{Hom}_{\operatorname{D^b}(\operatorname{mod}\Lambda)}(Y,\nu(X))$$

for any  $X, Y \in D^{b} (\text{mod } \Lambda)$ .

#### **Auslander-Reiten translation**

Denote  $\nu_i := \nu \circ [-i]$ . In the classical case n = 1, the *AR-translation*  $\tau_1 := D$  Tr is isomorphic to

$$au_1 := \operatorname{H}^0(
u_1) = D\operatorname{Ext}^1_{\Lambda}(-,\Lambda) : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda.$$

There is thus a natural higher dimensional generalisation:

$$au_n := \mathsf{H}^0(
u_n) = D\operatorname{Ext}^n_{\Lambda}(-,\Lambda) : \operatorname{\mathsf{mod}} \Lambda o \operatorname{\mathsf{mod}} \Lambda$$

#### **Properties to generalise**

- A key reason for which the usual definition of  $\tau_1 = D$  Tr agrees with  $H^0(\nu_1)$  in the case n = 1, thus giving an endofunctor of mod  $\Lambda$ , is that
  - Hom<sub> $\Lambda$ </sub>( $M, \Lambda$ ) = 0  $\forall M$  non-projective;
  - $\operatorname{Hom}_{\Lambda}(D\Lambda, N) = 0 \quad \forall N \text{ non-injective.}$

In other words,

 $\nu_1^{-1}(N)$  is only concentrated in degree 0  $\forall N$  non-injective.

#### **Properties to generalise**

 One can distinguish between representation-finite and representation-infinite algebras as follows. Define

 $\mathscr{P} := \operatorname{add}\{\tau_1^{-i}(\Lambda) \,|\, i \ge 0\} \text{ and } \mathscr{I} := \operatorname{add}\{\tau_1^i(D\Lambda) \,|\, i \ge 0\}$ 

R

the subcategories of preprojective and preinjective  $\Lambda\text{-modules}$  respectively. Then  $\Lambda$  is

- *representation-finite* if and only if  $\mathscr{P} = \mathscr{I}$ ;
- representation-infinite if and only if  $\mathscr{P} = \operatorname{add} \{ \nu_1^{-i}(\Lambda) \mid i \ge 0 \}.$





#### Definition

Let  $\Lambda$  be a finite-dimensional algebra of global dimension *n*. We say that  $\Lambda$  is

- **1.** *n*-representation-finite if for all  $P \in \text{ind. proj } \Lambda$ , there exists  $i \ge 0$  such that  $\nu_n^{-i}(P) \in \text{ind. inj } \Lambda$ ;
- **2.** *n*-representation-infinite if  $\nu_n^{-i}(\Lambda)$  is concentrated in degree 0 for all  $i \ge 0$ ;
- **3.** *n*-*hereditary* if it is *n*-representation-finite or *n*-representation-infinite.
- ▶ In case (1), Π :=  $\bigoplus_{i\geq 0} \tau_n^{-i}(\Lambda)$  is an *n*-cluster-tilting Λ-module, that is,

add 
$$\Pi = \{X \in \text{mod } \Lambda \mid \text{Ext}^{i}_{\Lambda}(X, \Pi) = 0 \text{ for all } 0 < i < n\}$$
$$= \{Y \in \text{mod } \Lambda \mid \text{Ext}^{i}_{\Lambda}(\Pi, Y) = 0 \text{ for all } 0 < i < n\}$$

and add  $\Pi = \mathscr{P} = \mathscr{I}$  ([lyama '11]).

▶ In both cases, *P* ∨ *I* has *n*-almost split sequences ([lyama '07, HIO '14]).

## **Classes of examples**

#### *n*-representation-finite algebras

- ► [HI '11] Tensor products of *l*-homogeneous higher representation-finite algebras are higher representation-finite.
- ▶ [IO '11] Higher type *A* algebras are *n*-representation-finite.
- [IO '13] Quasi-tilted algebras of canonical type (2, 2, 2, 2) are 2-representation-finite.

## **Classes of examples**

#### *n*-representation-infinite algebras

- [HIO '14] Tensor products of higher representation-infinite algebras are higher representation-infinite.
- [AIR '15] If G < SL(n + 1, k) is a finite cyclic group satisfying a certain condition, then there exists a grading on the skew-group algebra k[x<sub>0</sub>,...,x<sub>n</sub>]#G such that the degree 0 part is *n*-representation-infinite. (Higher McKay correspondence)
- [HIO '14] Higher type  $\tilde{A}$  algebras are *n*-representation-infinite.
- ► [BS '10] Let *Z* be a smooth projective Fano variety with dim Z = n and  $T \in D^{b}(Coh Z)$  be a tilting object. Then  $\Lambda = End_{Z}(T)$  is *n*-representation-infinite.

## **Motivating Problem**

In the case n = 1, there is a complete classification of the representation-finite and representation-infinite finite-dimensional hereditary algebras (Gabriel).

#### Problem

Classify the *n*-hereditary algebras.

#### Questions

- Is the quiver of an *n*-hereditary algebra acyclic? (Conjecture: yes [HIO '14])
- ls there a bound on dim<sub>k</sub>  $Ext^1(S_i, S_j)$ ?
- Can we classify certain subclasses of *n*-hereditary algebras?

## Some known classification results

 Iyama and Oppermann ('13) classified the iterated tilted 2-representation-finite algebras, using the classification of selfinjective cluster tilted algebras [Ringel '08].

▶ Vaso ('17) classified the *n*-representation-finite Nakayama algebras.

## **Formality**

► Hereditary algebras are *formal*, that is, for any object  $X \in D^{b}(\text{mod }\Lambda)$ ,  $X \cong \bigoplus_{\ell \in \mathbb{Z}} H^{\ell}(X)[-\ell].$ 

► There is an analogous property for *n*-hereditary algebras. Define  $D^{n\mathbb{Z}}(\text{mod }\Lambda) := \{X \in D^{b}(\text{mod }\Lambda) \mid H^{i}(X) = 0 \ \forall i \in \mathbb{Z} \setminus n\mathbb{Z}\}.$ Suppose gl.dim  $\Lambda = n$ . Then  $\Lambda$  is *n*-hereditary if and only if  $\nu_{n}^{i}(\Lambda) \in D^{n\mathbb{Z}}(\text{mod }\Lambda)$  for all  $i \in \mathbb{Z}$  [HIO '14].

In particular, this implies that

$$u_n^i(\Lambda) \cong \bigoplus_{\ell \in \mathbb{Z}} \mathsf{H}^{\ell n}(\nu_n^i(\Lambda))[-\ell n] \quad \text{for all } i \in \mathbb{Z} \quad [lyama '11]$$

and

$$\operatorname{Ext}^{\ell}_{\Lambda}(D\Lambda, \Lambda) = 0$$
 for all  $0 < \ell < n$ .

## Formality as an obstruction

Formality is a very good first obstruction, allowing us to narrow the subclass of *n*-hereditary algebras by quite a lot.

#### Lemmata

Let  $\Lambda = kQ/l$  be a finite-dimensional algebra. Suppose that  $\operatorname{Ext}^{1}_{\Lambda}(D\Lambda, \Lambda) = 0$ . Then

Every arrow in *Q* is part of a relation.

If, in addition,  $\Lambda$  is monomial, then

- Every relation r which does not start at a source and end at a sink must intersect with at least one other relation;
- For every sink (resp. source) vertex *i*, there is exactly one arrow *a* such that h(a) = i (resp. t(a) = i).

## **Truncated path algebras**

#### > We obtain another consequence of formality for truncated path algebras.

#### Theorem

Let *Q* be a finite quiver and  $J \subset kQ$  the arrow ideal. Let  $\Lambda = kQ/J^{\ell}$  for some  $\ell \geq 2$ . Suppose that  $\operatorname{Ext}^{1}_{\Lambda}(D\Lambda, \Lambda) = 0$ . Then  $\Lambda$  is a Nakayama algebra.

Using Vaso's classification of the *n*-representation-finite Nakayama algebras, we obtain the following corollary.

Let  $\mathbb{A}_m$  be the linearly oriented Dynkin quiver of type *A* with *m* vertices:

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots \longrightarrow m-1 \longrightarrow m$$

#### Corollary

Let *Q* be a finite quiver and  $J \subset kQ$  the arrow ideal. Let  $\Lambda = kQ/J^{\ell}$  for some  $\ell \geq 2$ . The following are equivalent:

**1.** Λ is *n*-hereditary;

**2.** 
$$Q = A_m$$
 and  $\ell | (m - 1)$  or  $\ell = 2$ .

In this case,  $n = 2\frac{m-1}{\ell}$  and  $\Lambda$  is an *n*-representation-finite algebra.

## **Preprojective algebras**

 A useful perspective in understanding *n*-hereditary algebras is to consider their preprojective algebra

$$\Pi := \bigoplus_{i \ge 0} \tau_n^{-i}(\Lambda).$$

- ▶ If  $\Lambda$  is *n*-representation-finite, then  $\Pi$  is a selfinjective algebra. The converse is true if n = 2. Moreover, mod  $\Pi$  is an (n + 1)-Calabi–Yau category ([IO '13]).
- A is *n*-representation-infinite if and only if  $\Pi$  is a bimodule Calabi–Yau algebra of Gorenstein parameter 1. In this case,  $D^{fd}(\text{mod }\Pi)$  is an (n + 1)-Calabi–Yau category ([AIR '15]).

## **Quadratic monomial 2-hereditary algebras**

- ▶ We restrict to the case of quadratic monomial 2-hereditary algebras.
- The preprojective algebras over 2-hereditary algebras enjoy an extra useful property: they are Jacobian algebras whose relations are encoded in a potential ([Keller '11]).

## **Quadratic monomial 2-hereditary algebras**

#### Theorem

Let  $\Lambda = kQ/I$  be a 2-hereditary quadratic monomial algebra. Then  $\Lambda$  is one of the following two bound quiver algebras:





These algebras are 2-representation-finite.

#### Remark

The second algebra can be obtained by taking a 2-APR-tilt of  $A_3 \otimes_k A_3$ .

What we can deduce from formality

Proposition

Let  $\Lambda = kQ/I$  be a quadratic monomial algebra of global dimension 2. Suppose that  $\text{Ext}^{1}_{\Lambda}(D\Lambda, \Lambda) = 0$ . Then *Q* is a quiver of the form:

