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7A Postnikov diagram D consists
of n oriented strands in an oriented disc,
connecting marked points t1, . . . , nu
around the boundary, and satisfying

(P0) Each marked point is the source of
one strand and the target of one strand.

(P1) The strands cross transversely,
pairwise, and finitely many times.

(P2) Moving along each strand, the
signs of its crossings with other strands alternate.

(P3) A strand does not cross itself.

(P4) If two strands cross twice, they are oriented in opposite directions
between these crossings.

D determines σD P Sn by mapping the source of each strand to its target. In
the example, σD “ p1, 6, 3qp2, 4, 7, 5q.



The quiver
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7The strands of D cut the disc into
regions, such that the orientation
of strands around the boundary
of each region is either alternating,
clockwise, or anticlockwise.

D determines a quiver QD with

(Q0) vertices corresponding to the
alternating regions

(Q1) arrows corresponding to crossings of strands

Some vertices and arrows are on the boundary, and will sometimes play a
different role to the others—we mark them in blue and call them frozen.
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Two commutative algebras
The permutation σD is a Grassmann permutation, and hence determines a
particular positroid subvariety Π˝pσDq Ď Grnk of the Grassmannian of
k-dimensional subspaces of Cn [Postnikov].

Our first commutative algebra is the homogeneous coordinate ring CrpΠ˝pσDqs
of this projective variety.

Our second is the cluster algebra AD with invertible frozen variables
determined by the quiver QD.

Theorem (Serhiyenko–Sherman-Bennett–Williams, Galashin–Lam)

There is an isomorphism AD
„
Ñ CrpΠ˝pσDqs, mapping the initial cluster

variables to restrictions of Plücker coordinates.

In particular, AD depends only on σD; the choice of D corresponds to a
choice of initial seed.

For σD : i ÞÑ i` k mod n, the variety Π˝pσDq is dense in Grnk , and the
cluster algebra with non-invertible frozen variables attached to QD is
isomorphic to the homogeneous coordinate ring CrxGr

n

k s. [Scott]



A non-commutative algebra
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7
The oriented regions of D are either
clockwise (˝) or anticlockwise (‚).

Thus QD has a determined set of
‚-cycles and ˝-cycles.

Let AD be the C-algebra determined
by QD with relations as follows:

Each non-boundary (green) arrow a
can be completed to either a ‚-cycle or a
˝-cycle by unique paths p‚a and p˝a; we impose the relation p‚a “ p˝a for each a.

This is an example of a frozen Jacobian algebra, for the potential
W “

ř

p‚-cyclesq ´
ř

p˝-cyclesq.

Technical note: we take the complete path algebra of QD over C, and the
quotient by the closure of the ideal generated by the given relations.
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Main goal

Objective
Use the non-commutative algebra AD to construct an additive categorification
of the cluster algebra AD

„
Ñ CrpΠ˝pσDqs.

Our approach will hinge on a particular Calabi–Yau symmetry property of the
algebra AD, which we will come to shortly.

This requires a non-degeneracy assumption: we ask that D is connected,
meaning the union of its strands is a connected set.

For the special permutation σD : i ÞÑ i` k mod n, a categorification of AD

is provided by Jensen–King–Su’s Grassmannian cluster category. We will
recover this category for these special diagrams, but via a different approach.



Interlude: dimer models
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7Consider a bipartite graph drawn
in our disc, together with half-edges
connecting some nodes to the boundary
marked points.

This is called a dimer model, and it also
determines a quiver and frozen Jacobian
algebra, called the dimer algebra.

This construction makes sense on any
oriented surface with or without boundary.

Theorem (Broomhead)
The dimer algebra of a consistent dimer model on the torus is bimodule
3-Calabi–Yau.

The dimer also determines strands—on the disc, consistency means that these
strands are a Postnikov diagram.
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Internally Calabi–Yau algebras
Our main result is a version of Broomhead’s theorem, adapted to dimer models
on the disc by weakening the 3-Calabi–Yau property at the boundary.

Let A be a Noetherian K-algebra, e “ e2 P A an idempotent, and
Aε “ AbC A

op its enveloping algebra.

Write Db
e pAq “ tX P DbpAq : H˚pXq P fdpA{AeAqu.

Definition
A is internally bimodule 3-Calabi–Yau with respect to e if
(1) A P perAε with projdimAε A ď 3,
(2) there is a triangle

AÑ RHomAεpA,Aεqr3s Ñ C Ñ Ar1s

in DpAεq such that RHomApC,Mq “ 0 for all M P Db
e pAq, and

RHomAoppC,Nq “ 0 for all N P Db
e pA

opq.

Consequence: gl.dimA ď 3 and ExtiApX,Y q “ D Ext3´i
A pY,Xq for any

X P modA and Y P fdpA{AeAq.



First main result

Theorem
Let D be a connected Postnikov diagram, with attached algebra AD. Let e be
the sum of idempotents given by the boundary (frozen) vertices. Then AD is
internally bimodule 3-Calabi–Yau with respect to e.

The proof uses the description of AD as a frozen Jacobian algebra, and the
following key observation, which is where the connectedness of D is used.

Lemma
Let D be a connected Postnikov diagram. Then AD has a central subalgebra
Z – Crrtss, and for each pair of vertices i and j, there is an isomorphism
ejAei – Z of Z-modules.

It also follows from this lemma that AD is Noetherian (because it is finitely
generated over the commutative Noetherian ring Z) and that the quotient
algebra AD{ADeAD is finite-dimensional, which we will use later.



Categorification

Theorem
Suppose A is a Noetherian K-algebra and e P A an idempotent such that A is
bimodule internally 3-Calabi–Yau with respect to e, and dimpA{AeAq ă 8.
Let B “ eAe. Then
(1) B “ eAe is Iwanaga–Gorenstein of Gorenstein dimension ď 3; that is, B

is Noetherian and injdim BB, injdimBB ď 3. In particular,

GPpBq “ tX P modB : Extią0
B pX,Bq “ 0u

is a Frobenius category.
(2) the stable category GPpBq “ GPpBq{projB is a 2-Calabi–Yau

triangulated category.
(3) A “ EndBpeAq

op and eA P GPpBq is cluster-tilting, that is

addpeAq “ tX P GPpBq : Ext1BpX, eAq “ 0u.



Second main result

Theorem
Let D be a connected Postnikov diagram, with algebra AD, let e P AD be the
boundary idempotent, and write BD “ eADe. Then GPpBDq is an additive
categorification of the cluster algebra AD – CrpΠ˝pσDqs.

This is just a corollary of the previous general result: AD satisfies all of the
assumptions by the first main result and its proof.

There is not a general definition of ‘additive categorification’: we use it here as
shorthand to refer to the consequences of the previous general result, and
many further consequences (e.g. concerning the mutation of cluster-tilting
objects) due to many people.

One could (and should) ask for more: it is not yet proved that mutation of
cluster-tilting objects in GPpBDq is compatible with Fomin–Zelevinsky
mutation of quivers, for example.



Boundary algebras

Since the cluster algebra AD, and the positroid variety Π˝pσDq, depend only
on the permutation of σD, this should also be true of our category.

Proposition
If D and D1 are connected Postnikov diagrams with σD “ σD1 , then
BD – BD1 , and so in particular GPpBDq » GPpBD1q.

This uses a result of Oh–Postnikov–Speyer; D and D1 as in the Proposition are
related by a sequence of local moves (which correspond to mutations of the
quiver and in the cluster algebra!) which affect the isomorphism class of AD,
but not of the subalgebra BD “ eADe.

The proof is really due to Baur–King–Marsh, who state the result for diagrams
with σD : i ÞÑ i` k mod n.



The Jensen–King–Su category

Jensen–King–Su describe, for each 1 ď k ď n, a Gorenstein algebra Bk,n

(directly, via a quiver with relations) such that GPpBk,nq categorifies the
Grassmannian cluster algebra CrxGr

n

k s.

This cluster algebra is (up to inverting frozen variables) AD in the case that D
a Postnikov diagram with permutation σD : i ÞÑ i` k mod n [Scott].

Theorem (Baur–King–Marsh)
If D has permutation σD : i ÞÑ i` k mod n, then BD – Bk,n.

Thus we recover Jensen–King–Su’s result as a special case, but via a different
description of Bk,n.

Unlike in the general case, it is known that mutation of cluster-tilting objects
in GPpBk,nq induces Fomin–Zelevinsky mutations of quivers.

It is also better understood how the objects of GPpBk,nq are related to
functions on the corresponding positroid variety (which is dense in the
Grassmannian Grnk in this case).



The Jensen–King–Su category

We call a Postnikov diagram with n strands of ‘average length’ k
a pk, nq-diagram. For example, if σD : i Ñ i ` k mod n then D is a
pk, nq-diagram, whose strands have constant length k.

Note: this is the k such that Π˝pσDq Ď Grnk .

Proposition (Çanakçı–King–P)
Let D be a pk, nq-diagram. Then there is a canonical ring morphism
Bk,n Ñ BD, inducing a fully-faithful functor GPpBDq Ñ GPpBk,nq.

This means the categories we construct here all appear as full subcategories in
Jensen–King–Su’s Grassmannian cluster category, for the appropriate k and n.

Idea of proof: there is a canonical map Π Ñ BD for Π the preprojective
algebra of type Ãn´1, since AD is a frozen Jacobian algebra whose frozen
subquiver is an orientation of this graph.

We check that the above canonical map factors over Bk,n, which is by
definition a quotient of Π.



Thanks for listening!
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Stay safe, and see you soon!


